The 2016 Nobel prize in Physics D. Thouless and Topological Invariants

J. Avron

May 2017

There is geometry in the humming of the strings, there is music in the spacing of the spheres. (Pythagoras)

Happy birthday, Petr

D. Thouless, D. Haldane, M. Kosteritz

Kosterlitz-Thouless transition; TKNN aka Chern numbers

Mathematical physics in 2 D

Kosterlitz-Thouless transition; TKNN aka Chern numbers

Quantum transistors

Marginal phase transition

TKNN 1982 cited 2874

Quantized Hall Conductance in a Two-Dimensional Periodic Potential

D. J. Thouless, M. Kohmoto,⁽⁴⁾ M. P. Nightingale, and M. den Nijs Department of Physics, University of Washington, Seattle, Washington 98195 (Received 30 April 1982)

The Hall conductance of a two-dimensional electron gas has been studied in a uniform magnetic field and a periodic substrate potential U. The Kubo formula is written in a form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit expressions have been obtained for the Hall conductance for both large and small $U/\hbar\omega_c$.

PACS numbers: 72,15,Gd, 72,20. Mg, 73.90.+b

The experimental discovery by von Klitzing, Dorda, and Pepper¹ of the quantization of the Hall conductance of a two-dimensional electron gas in Laughlin's² argument that the Hall conductance is quantized whenever the Fermi energy lies in an energy gap, even if the gap lies within a Landau

TKNN: Topological quantum numbers (1982) B. Simon: Chern classes in QM (1983) M.V. Berry: Adiabatic curvature, Berry's phase (1984)

Maxwell's Ingenious blunders

The Classical Hall effect 1879

The Quantum Hall effect

von Klitzing (Nobel 1985)

Fundamental vs natural standards

Time: Natural but not fundamental

Second: Hyperfine transition of Cs₁₃₃

9, 192, 631, 770 [*Hz*]

Natural, NOT fundamental

9, 192, 631, 770 [*Hz*] is precisely measurable, but Not related to a fundamental time scale in a known way

Fundamental vs natural standards

Ohm: Artificial but fundamental

• Ohm: QHE

Artificial but fundamental

 e^2/h

3 2 1

Resistance:

The quantum unit of resistance is precisely measurable

1/*B*

Heisenberg quantization

Quantization and spectral theory

- Observables=Linear operators
- Measurements yield eigenvalues

$$\operatorname{Spect}(L_z) \subseteq \frac{\hbar}{2}\mathbb{Z}$$

• Not the mechanism in the QHE

Dirac quantization

Electric charges are an integer

• Electric charges $\in q_e \mathbb{Z}$

 $q_{electron} = -q_{proton}$

• Magnetic monopole *q_{mag}*

$$q_{electric}q_{mag}\in rac{\hbar c}{2}\mathbb{Z}$$

Not the mechanism in the QHE

TKNN quantization

Quantization of transport coefficients

Topological invariants & Transport Hall Conductance= Chern number

Gauss-Bonnet-Chern

$$\frac{1}{2\pi}\int \textit{Curvature} \in \mathbb{Z}$$

Real scientists solve models. Wimps generalize M. Berry

The Hofstadter model

- $\psi(n,m) \in \ell^2(\mathbb{Z}^2)$
- North translation

 $(N\psi)(n,m) = \psi(n,m-1)$

East translations:

 $(E\psi)(n,m) = e^{-2\pi i B m} \psi(n-1,m)$

Hamiltonian

H = E + N + h.c.

Periodic matrices

The importance of families

• When $B = \frac{p}{a}$: *H* is periodic and reduces to

$$\underbrace{H(k_1, k_2)}_{q \times q \text{ periodic matrix}} = e^{ik_1} \underbrace{\mathsf{T}}_{\text{cyclic shift}} + e^{ik_2} \underbrace{\hat{\mathsf{T}}}_{\text{FT of cyclic shift}} + h.c.$$

• Example $B = \frac{1}{3}$:

$$\mathbf{T} = \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}}_{3 \times 3}, \quad \hat{\mathbf{T}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \quad \underbrace{\omega = e^{2\pi i B}}_{\text{root of unity}}$$

Quantum states as bundles of projections

Full bands of free Fermions

- $H(k_1, k_2)$: periodic $q \times q$ hermitian matrix
- *Spectrum*(*H*): q-bands.
- $P_j(k_1, k_2)$: bundles of projections

Quantum states at T = 0

- Finite system: Rank 1 projection
- Full bands of free Fermions: Bundle of projections

Families of spectral projections

• Smooth, periodic spectral projection

$$P(k_1, k_2) = P(k_1 + 2\pi, k_2) = P(k_1, k_2 + 2\pi)$$

• Rank one projection:

$$\underbrace{P = \left|\psi\right\rangle\left\langle\psi\right|}_{\text{family}}$$

Curvature in differential geometry

Curvature: Failure of parallel transport

Curvature of bundles of projections in Hilbert space

Berry's phase: Failure of parallel transport

Expectation of currents=Rates of Berry's gauge

• Evolution equation

$$irac{d\left|\psi_{t}
ight
angle}{dt}=H(k,t)\left|\psi_{t}
ight
angle$$

Define current:

 $\frac{\partial H}{\partial k}$

• Expectations related to rate of Berry's phase

$$\underbrace{\left\langle \psi_t \left| \frac{\partial H}{\partial k} \right| \psi_t \right\rangle}_{\text{expectation of current}} = \underbrace{i \frac{d}{dt} \langle \psi | \partial_k \psi \rangle}_{\text{rate of Berry's phase}}$$

Hall conductance=Chern number

$$T^2 = \mathbb{R}^2 / \mathbb{Z}^2$$

Gauss-Bonnet-Chern rediscovered $rac{1}{2\pi}\int_{\mathcal{T}^2} dm{A} \in \mathbb{Z}$

$$\int_{T^2} \mathbf{dA} = \oint_{\partial T^2} \mathbf{A}$$
$$= \beta_1 + \beta_2 + \beta_3 + \beta_4 \in 2\pi\mathbb{Z}$$

Hofstadter butterfly

Fractal diagram of Chern numbers

→ density

What have we learned?

And what did I not cover

- Transport coefficients have geometric significance
- Macroscopic systems of Fermions are bundles of projections
- Bundles of projections are related to Chern classes
- K-theory, Entanglement, Topological states of matter,....

The Quantum Hall effect

2016 Nobel prize food for thought

Fiber bundles with cream cheese

