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Let Ω ⊂ Rd be a bounded domain. We denote:

−∆Ω
D – the Dirichlet Laplacian in L2(Ω)

The spectrum of the operator −∆Ω
D is purely discrete. We denote

by
0 < λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) ≤ . . .

the ordered sequence of its eigenvalues (counting multiplicities).

Diana Barseghyan Semiclassical bounds for magnetic Laplacian 2/45



Introduction
Main results

Example: a two- dimensional disc
Application to the three-dimensional case

Spectral estimates for eigenvalues from perturbed magnetic field
Three dimensions: a magnetic ‘hole’

Operators
Bounds for the eigenvalues of the Dirichlet Laplacian
Bounds for the magnetic Laplacian

In the present talk we consider a magnetic version of the Dirichlet
Laplacian, the operator

HΩ(A) = (i∇+ A(x))2

associated with the closed form

‖ (i∇+ A)u ‖2
L2(Ω), u ∈ H1

0(Ω),

with the real valued and sufficiently smooth vector function A.

The field A is called the magnetic potential.
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The magnetic Sobolev norm

‖ (i∇+ A)u ‖2
L2(Ω), u ∈ H1

0(Ω),

is equivalent to the non magnetic one (Ω is a bounded domain),
whence

HΩ(A) has a purely discrete spectrum

We shall denote the eigenvalues of HΩ(A) by

λk = λk(Ω,A)

assuming that they repeat according to their multiplicities.
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The object of our interest in this talk are bounds of the eigenvalue
moments of such operators.

At first we mention some known results for the Dirichlet Laplacian.

In what follows by (·)+ we denote the positive part of the quantity
staying in the brackets, namely

(f )+ =

{
f , f ≥ 0,

0, f < 0.
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Weyl asymptotics

∑
k

(Λ− λk(Ω))σ+ = Lclσ,d |Ω|Λσ+ d
2 + o(Λσ+ d

2 ), σ ≥ 0, Λ→∞,

where |Ω| is the volume of Ω and

Lclσ,d =
Γ(σ + 1)

(4π)
d
2 Γ(σ + 1 + d/2)

. (?)

Berezin bound∑
k

(Λ− λk(Ω))σ+ ≤ Lclσ,d |Ω|Λσ+ d
2 for any σ ≥ 1 and Λ > 0,

where Lclσ,d is defined by (?).

The constant Lclσ,d is optimal.
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Remark 1

A. Laptev proved that Berezin bound∑
k

(Λ− λk(Ω))σ+ ≤ Lclσ,d |Ω|Λσ+ d
2 , Λ > 0

holds true for 0 ≤ σ < 1 as well, but with another, probably
non-sharp constant on the right-hand side.

Namely, one has for 0 ≤ σ < 1∑
k

(Λ− λk(Ω))σ+ ≤ 2

(
σ

σ + 1

)σ
Lclσ,d |Ω|Λσ+ d

2 , Λ > 0.
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Remark 2

In particular case σ = 1 Berezin bound has the form∑
k

(Λ− λk(Ω))+ ≤ Lcl1,d |Ω|Λ1+ d
2 , Λ > 0,

and is equivalent to the lower bound

N∑
j=1

λj(Ω) ≥ Cd |Ω|−
2
d N1+ 2

d , Cd =
4πd

d + 2
Γ(d/2 + 1)

2
d .

This estimate is called Li–Yau inequality.
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HΩ(A) = (i∇+ A(x))2 – magnetic Laplacian

In view of the pointwise diamagnetic inequality

|∇|u(x)|| ≤ |(i∇+ A)u(x)| for a.a. x ∈ Ω

one has
λ1(Ω,A) ≥ λ1(Ω, 0).

However for j ≥ 2 the estimate λj(Ω,A) ≥ λj(Ω, 0) fails in general.

Nevertheless, momentum estimates are still valid for some values
of the parameters.
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Laptev–Weidl, 2000

The sharp bound∑
k

(Λ− λk(Ω,A))σ+ ≤ Lclσ,d |Ω|Λσ+ d
2 for any Λ > 0

holds true for arbitrary magnetic fields provided σ ≥ 3
2 , and the same

sharp bound holds true for constant magnetic fields if σ ≥ 1.

Frank–Loss–Weidl, 2009

In the dimension d = 2 the bound∑
k

(Λ− λk(Ω,A))σ+ ≤ 2

(
σ

σ + 1

)σ
Lclσ,d |Ω|Λσ+ d

2

holds true for constant magnetic fields if 0 ≤ σ < 1, moreover the
constant on its right-hand side cannot be improved.
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Our first aim in this work is to derive a two-dimensional version of
the Li–Yau inequality in presence of a constant magnetic field
giving rise to an extra term on the right-hand side.

Note, that in two-dimensional case Li–Yau inequality has the form

N∑
j=1

λj(Ω, 0) ≥ 2πN2

|Ω|
.
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Suppose that the motion is confined to a domain ω ⊂ R2 being
exposed to influence of a constant magnetic field of intensity B,
and let A : R2 → R2 be a vector potential generating this field.

We denote by
Hω(A) = (i∇+ A(x))2

the corresponding magnetic Dirichlet Laplacian on ω and by

0 < λ1(ω,A) ≤ λ2(ω,A) ≤ λ3(ω,A) ≤ . . .

the sequence of its eigenvalues arranged in the ascending order
with account of their multiplicity.
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Theorem [Weidl–Kovarik, 2013]

Let ω ⊂ R2 be bounded and convex. Then for any N ∈ N it holds
N∑
j=1

λj(ω,A) ≥ 2πN2

|ω|
+

1

64

σ2(ω)

|ω|2
,

where ...
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...where

Notations

δ(x) := miny∈∂ω |x − y | – the distance from x to the boundary of ω

for β > 0 we set ωβ := {x ∈ ω : δ(x) < β},

σ(ω) := inf
0<β<R(ω)

|ωβ |
β
,

where R(ω) := supx∈ω δ(x) is the in-radius of ω.
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Our first aim is to extend the inequality

N∑
j=1

λj(ω,A) ≥ 2πN2

|ω|
+

1

64

σ2(ω)

|ω|2
.

obtained by Weidl and Kovarik, but with an additional term on the
right-hand side depending on B only and independent of the
geometry of ω.
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Theorem 1 [B–Exner–Kovarik–Weidl, 2016]

Assume that ω ⊂ R2 is a bounded domain. Then the inequality

N∑
j=1

λj(ω,A) ≥ 2πN2

|ω|
+

B2

2π
|ω|m(1−m)

holds, where m :=
{

2πN
B|ω|

}
is the fractional part of 2πN

B|ω| .

Since 0 ≤ m < 1 by definition the last term can regarded as a
non-negative remainder term.
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Theorem 2 [B–Exner–Kovarik–Weidl, 2016]

Let ω ⊂ R2 be a bounded domain, and Λ > B. Then

N∑
j=1

(Λ− λj(ω,A))+ ≤
(Λ2 − B2)|ω|

8π
+

(Λ− B)B|ω|
4π

{
Λ + B

2B

}
.
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Example 2. Radial magnetic field

Spectral analysis simplifies if the domain ω allows for a separation
of variables.
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If the magnetic field is non-constant but still radially symmetric, in
general one cannot find the eigenvalues explicitly but it possible to
find a bound to the eigenvalue moments in terms of an appropriate
radial two-dimensional Schrödinger operator.
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Theorem 4 [B–Exner–Kovarik–Weidl, 2016]

Let Hω(A) be the magnetic Dirichlet Laplacian Hω(A) on a disc ω
of radius r0 > 0 centered at the origin with a radial magnetic field
B(x) = B(|x |). Assume that

α :=

∫ r0

0
sB(s)ds <

1

2
.

Then for any Λ, σ ≥ 0, the following inequality holds true

tr(Λ− Hω(A))σ+ ≤
(

1√
1− 2α

+ sup
n∈N

{
n√

1− 2α

})

× tr

Λ−

−∆ω
D +

1

x2 + y2

(∫ √x2+y2

0
sB(s) ds

)2
σ

+

.
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Remark

inf σ(Hω(A)) ≥ inf σ

−∆ω
D +

1

x2 + y2

(∫ √x2+y2

0
sB(s) ds

)2
 .
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Let −∆Ω be the Dirichlet Laplacian on a domain Ω ⊂ R3.

Theorem [Laptev–Weidl, 2000]

For any σ ≥ 3
2 one has the inequality

tr (Λ− (−∆Ω))σ+ ≤ Lcl1,σ

∫
R
tr
(
Λ− (−∆ω(x3))

)σ+ 1
2

+
dx3,

where −∆ω(x3) is the Dirichlet Laplacian on the section

ω(x3) =
{
x ′ = (x1, x2) ∈ R2| x = (x ′, x3) = (x1, x2, x3) ∈ Ω

}
,

Remark: The integral at the right-hand side in fact restricted to
those x3 for which inf spec(−∆ω(x3)) < Λ.
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A similar technique can be used also in the magnetic case.

A = (A1,A2,A3) : Ω→ R3

HΩ(A) = (i∇− A(x))2 on L2(Ω)

For the fixed x3

Ã(x) := (A1(x),A2(x)).

H̃ω(x3)(Ã) = (i∇(x1,x2) − Ã(x))2 on L2(ω(x3)),
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Theorem [Laptev–Weidl, 2000]

For σ ≥ 3
2

tr(Λ−HΩ(A))σ+ ≤ Lcl1,σ

∫
R
tr(Λ− H̃ω(x3)(Ã))

σ+1/2
+ dx3

Note that for the fixed x3 the two-dimensional vector potential
Ã(x1, x2, x3) corresponds to the magnetic field

∂A2

∂x1
− ∂A1

∂x2
= B3(x).

The class of fields to consider here are those of the form

B(x) = (B1(x),B2(x),B3(x3)).
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Theorem [B.-Exner-Kovarik-Weidl 2016]

tr(Λ−HΩ(A))σ+ ≤
Γ(σ + 3/2)Λσ−1/2

4π(2σ − 1)Γ(σ − 1/2)
Lcl1,σ

∫
{x3: B3(x3)<Λ}

|ω(x3)|

×
[(

Λ2 − B3(x3)2
)

+ 2B3

(
Λ− B3(x3)

) {Λ + B3

2B3

}]
dx3

for any σ ≥ 3/2.
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Example (radial magnetic field)

Consider the same cusp-shaped region Ω in the more general
situation when the third field component can depend on the radial
variable, B(x) = (B1(x),B2(x),B3(x2

1 + x2
2 , x3)), assuming that

sup
x3∈R

α(x3) = sup
x3∈R

∫ r0(x3)

0
sB3(s, x3) ds <

1

2
.

Then...
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...

Then

tr(Λ−HΩ(A))σ+ ≤ Lcl1,σ

∫
R

(
1√

1− 2α(x3)
+ sup

n∈N

{
n√

1− 2α(x3)

})

×tr

Λ−

−∆
ω(x3)
D +

1

x2
1 + x2

2

(∫ √x2
1 +x2

2

0

sB3(s, x3)ds

)2
σ+1/2

+

for any σ ≥ 3/2.
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Now we change the topic and consider situations when the discrete
spectrum comes from the magnetic field alone. We are going to
demonstrate a Berezin-type estimate for the magnetic Laplacian on R2

with the field which is a radial and local perturbation of a homogeneous
one.

H(B) = −∂2
x + (i∂y + A2)2, A =

(
0,B0 x − f (x , y)

)
, on L2(R2)

f (x , y) = −
∫ ∞
x

g(
√
t2 + y2)dt .

with g : R+ → R+.

The operator H(B) is then associated with the magnetic field

B = B(x , y) = B0 − g(
√

x2 + y2 ) .
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In the following we will suppose that

(i) the function g ∈ L∞(R+) is non-negative and such that both
f and ∂x2f belong to L∞(R2), and

lim
x2

1 +x2
2→∞

(
|∂x2f (x1, x2)|+ |f (x1, x2)|

)
= 0 .

(ii) ‖g‖∞ ≤ B0 .
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Let us turn back to the unperturbed case

H(B0) = −∂2
x + (i∂y + B0x)2.

Then the corresponding spectrum consists of identically spaced
eigenvalues of infinite multiplicity,

σ(H(B0)) = {(2n − 1)B0, n ∈ N } .
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A0 = (0, a0(r)) , A = (0, a(r)) ,

with

a0(r) =
B0r

2
, a(r) =

B0r

2
− 1

r

∫ r

0
g(s) s ds .

Finally let us denote by

α =

∫ ∞
0

g(r) r dr .
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Theorem 4 [B–Exner–Kovarik–Weidl, 2016]

Let the assumptions (i) and (ii) be satisfied, and suppose moreover
that α ≤ 1. Then

inf σess(H(B)) = B0.
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Theorem 4 [B–Exner–Kovarik–Weidl, 2016]

The inequality holds true

tr(H(B)− B0)γ− ≤ 2γ
∞∑
k=0

Λγk , γ ≥ 0 ,

For every k ∈ N0

Vk(r) :=
2k

r
(a0(r)− a(r)) + a2(r)− a2

0(r) ,

ψk(r) =

√
B0

Γ(k + 1)

(
B0

2

)k/2

rk exp

(
−B0 r

2

4

)
.

Λk =
(
ψk ,
(
Vk( ·)

)
− ψk

)
L2(R+,rdr)

.
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Lieb-Thirring-type inequalities for H(B)
Perturbations with a compact support
Sketch of the proof of Theorem 2

Let us return to the three-dimensional situation and consider a magnetic
Hamiltonian H(B) in L2(R3) associated to the magnetic field
B : R3 → R3 regarded as a perturbation of a homogeneous magnetic
field of intensity B0 > 0 pointing in the x3-direction,

B(x1, x2, x3) = (0, 0,B0)− b(x1, x2, x3) ,

with the perturbation b of the form

b(x1, x2, x3) =

(
−ω′(x3) f (x1, x2), 0, ω(x3) g

(√
x2

1 + x2
2

))
.

Here ω : R→ R+ , g : R+ → R+ and

f (x1, x2) = −
∫ ∞
x1

g

(√
t2 + x2

2

)
dt .

Diana Barseghyan Semiclassical bounds for magnetic Laplacian 33/45



Introduction
Main results

Example: a two- dimensional disc
Application to the three-dimensional case

Spectral estimates for eigenvalues from perturbed magnetic field
Three dimensions: a magnetic ‘hole’

Lieb-Thirring-type inequalities for H(B)
Perturbations with a compact support
Sketch of the proof of Theorem 2

The first component of B then ensures that ∇ · B = 0, which is
required by the Maxwell equations which include no magnetic
monopoles; it vanishes if the field is x3-independent.

A vector potential generating this field can be chosen in the form

A(x1, x2, x3) = (0, B0 x1 − ω(x3) f (x1, x2), 0) ,

and

H(B) = −∂2
x1

+ (i∂x2 + B0 x1 − ω(x3) f (x1, x2))2 − ∂2
x3
.

Diana Barseghyan Semiclassical bounds for magnetic Laplacian 34/45



Introduction
Main results

Example: a two- dimensional disc
Application to the three-dimensional case

Spectral estimates for eigenvalues from perturbed magnetic field
Three dimensions: a magnetic ‘hole’

Lieb-Thirring-type inequalities for H(B)
Perturbations with a compact support
Sketch of the proof of Theorem 2

The first component of B then ensures that ∇ · B = 0, which is
required by the Maxwell equations which include no magnetic
monopoles; it vanishes if the field is x3-independent.

A vector potential generating this field can be chosen in the form

A(x1, x2, x3) = (0, B0 x1 − ω(x3) f (x1, x2), 0) ,

and

H(B) = −∂2
x1

+ (i∂x2 + B0 x1 − ω(x3) f (x1, x2))2 − ∂2
x3
.

Diana Barseghyan Semiclassical bounds for magnetic Laplacian 34/45



Introduction
Main results

Example: a two- dimensional disc
Application to the three-dimensional case

Spectral estimates for eigenvalues from perturbed magnetic field
Three dimensions: a magnetic ‘hole’

Lieb-Thirring-type inequalities for H(B)
Perturbations with a compact support
Sketch of the proof of Theorem 2

In the following we suppose that

(i) the function g ∈ L∞(R+) is non-negative, such that f and
∂x2f belong to L∞(R2), and

lim
x2

1 +x2
2→∞

(
|∂x2f (x1, x2)|+ |f (x1, x2)|

)
= 0 ,

(ii) ω ≥ 0, ω ∈ L2(R) ∩ L∞(R), and

‖ω‖∞ ‖g‖∞ ≤ B0 , lim
|x3|→∞

ω(x3) = 0 .
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Theorem 4 [B–Exner–Kovarik–Weidl, 2016]

The assumptions (i) and (ii) imply σess(H(B)) = [B0,∞).
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Now we are going to formulate Lieb-Thirring-type inequalities for
the negative eigenvalues of H(B)− B0. We denote by

α(x3) = ω(x3)

∫ ∞
0

g(r) r dr .

Theorem 4 [B–Exner–Kovarik–Weidl, 2016]

Let assumptions (i) and (ii) be satisfied. Suppose, moreover, that
supx3

α(x3) ≤ 1 and put

Λk(x3) =
(
ψk ,
(
Vk(·; x3)

)
− ψk

)
L2(R+,rdr)

.

Then the inequality holds true

tr (H(B)− B0)σ− ≤ Lclσ,1 2σ+ 1
2

∫
R

∞∑
k=0

Λk(x3)σ+ 1
2 dx3 , σ ≥ 3

2
.
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Let D be a circle of radius R centered at the origin and put

g(r) =

{
B0 r ≤ R
0 r > R

.

Theorem 4 [B–Exner–Kovarik–Weidl, 2016]

Assume that B0R
2 ≤ 2. Suppose moreover that ‖ω‖∞ ≤ 1. Then

for any σ > 3/2 it holds

tr (H(B)− B0)σ− ≤ Lclσ,1 J
(
B0 , σ

)
B
σ+ 1

2
0

∫
R
ω(x3)σ+ 1

2 dx3 ,

where

J(B0, σ) =
(
B0 R

2
)σ+ 1

2

1 +
∞∑
k=1

((
B0 R

2

2

)k+1
1

k!
+

1

2
√

2πk

)σ+ 1
2

 .
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Thank you for your attention!
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Let us give a sketch of the proof of the Berezin-type inequality:

N∑
j=1

(Λ− λj(A))+ ≤
(Λ2 − B2)|ω|

8π
+

(Λ− B)B|ω|
4π

{
Λ + B

2B

}
.

One has (Theorem 1) the Li-Yau-type inequality∑
j≤N

λj(A) ≥ 2πN2

|ω|
+

B2

2π
|ω|m(1−m).

Recall that m :=
{

2πN
B|ω|

}
. Subtracting NΛ from its both sides, we get

N∑
j=1

(Λ− λj(A)) ≤ f (N),

where f : R+ → R,

f (z) := zΛ− 2πz2

|ω|
− B2|ω|

2π

{
2πz

B|ω|

}(
1−

{
2πz

B|ω|

})
.
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We are going to investigate the function f (z) on the intervals

B|ω|k
2π

≤ z <
B|ω|(k + 1)

2π
, k = 0, 1, 2, . . .

It is easy to check that f ′(z) = Λ− 4π
|ω|z −B + 2B

{
2πz
B|ω|

}
, thus the extremum

of f is achieved at the point z0 satisfying

Λ− B − 4π

|ω|z0 + 2B

{
2πz0

B|ω|

}
= 0.

Denoting x0 := 2πz0
B|ω| , the condition reads

Λ− 2Bx0 − B + 2B{x0} = 0

giving

x0 =
Λ− B + 2B{x0}

2B
.

It yields the value of function f at z0

f (z0) =
|ω|(Λ2 − B2)

8π
.
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Furthermore, the values of f at the endpoints Bk|ω|
2π , k ∈ N equal

f

(
Bk|ω|

2π

)
=

Bk |ω|
2π

(Λ− kB) ≤

≤ (Λ2 − B2)|ω|
8π

+
(Λ− B)B|ω|

4π

{
Λ + B

2B

}
.

Recall, that in the extremum point z0 we have

f (z0) =
|ω|(Λ2 − B2)

8π
.

Hence

f (z) ≤ (Λ2 − B2)|ω|
8π

+
(Λ− B)B|ω|

4π

{
Λ + B

2B

}
, ∀z ≥ 0.
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Thus, we arrive at

N∑
j=1

(Λ− λj(A)) ≤ f (N) ≤ (Λ2 − B2)|ω|
8π

+
(Λ− B)B|ω|

4π

{
Λ + B

2B

}
and Theorem 2 is proved.
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