DYNAMICAL SYSTEMS THEORY OF PUBLIC OPINION TAKSU CHEON

Talk presented at Hradec Kralove Conference "Chaos and what it can reveal", May 9th, 2017 All rights reserved T_Zen & Associates

PETR SEBA IN KOCHI, JAPAN OR THE STORY OF TEA

Black

MODELING DEMOCRATIC DEBATE

- How collective decisions are achieved?
- Majority principle ubiquitous from bee to human

with some twist

- Interpret democracy as assertive minorities in search of majority support and try to build mathematical model
- Dynamical systems theory of political cycle obtained

POLYA URN WHICH ONE?

POLYA URN

- t balls in two colors (m black/ t-m white) in an urn at time t
- At update t -> t+1, a ball randomly drawn, put back with <u>an additional ball with same color</u>
- What is the ratio of black balls $p_t = m/t$ at $t \rightarrow infty$?

POLYA URN EXTENDED

- At update t -> t+1, r ball randomly drawn, put back with <u>an additional ball with majority color</u>
- What is the ratio of black balls $p_t = m/t$ at $t \rightarrow infty$?

POLYA URN HISAKADO-MORI MODEL

- At update t -> t+1
 - add a black / white ball with prob. a / b
 - with prob. 1-a-b, count all t balls,
 - add a black ball with prob. $Q(p_t)$, white with $1-Q(p_t)$

POLYA URN

HISAKADO-MORI EXPRESSED BY INFLEXIBLE HARD BALLS

At update t -> t+1 Q(p)=Θ(p-1/2), p_t=m/t
 — count all t balls, add a ball with <u>majority color</u>, except...
 — if *i* hard-black balls found, <u>add a hard-black</u> with prob. a = i/t
 — if *j* hard-white balls found, <u>add a hard-white</u> with prob. b = j/t

POLYA URN

MODELING THE DYNAMICS OF ASSERTIVE MINORITY

At update *t* -> *t*+1

 $Q(q) = \Theta(q-1/2), \quad q = \mu/r$

- <u>sample r balls</u>, add a ball with <u>majority color</u>, except...
- if α hard-black balls found, add a hard-black with $s_a = (1+f_{\pm})\alpha/r$

— if β hard-white balls found, add a hard-white with $s_b = (1+g_{\pm})\beta/r$

"DYNAMICAL" OPINION DYNAMICS OUR MODEL AS EXTENDED GALAM MODEL

 Two-state agents evolving by group-majority rule (size r) with the presence of inflexible agents

EXTREMISTS AND MODERATES EBB AND FLOW

- Committed few (extremists) drives political movement
- Extremists thrive in hostile environment
- Extremists normally lose their edge after success (moderates tend to suppress them in dominance)
- —> Increase/decrease rate of hard-black in friendly environ $(1+f_+) < 1$; in hostile environ $(1+f_-) > 1$
- —> Increase/decrease rate of hard-white in friendly environ $(1+g_{-}) < 1$; in hostile environ $(1+g_{+}) > 1$

"DYNAMICAL" OPINION DYNAMICS

Evolution equation for majority and assertive minorities

 $p_{t+1} = P_{+}^{(r)}(p_t, a_t, b_t)$ $a_{t+1} = P_{A}^{(r)}(p_t, a_t, b_t)$ $b_{t+1} = P_{B}^{(r)}(p_t, a_t, b_t)$

- Increase/decrease rate of hard-black in friendly environ $(1+f_+) < 1$; in hostile environ $(1+f_-) > 1$
- Increase/decrease rate of hard-white in friendly environ $(1+g_{-}) < 1$; in hostile environ $(1+g_{+}) > 1$
- Hard-black/hard-white appearance in all white/black env: f_A / g_B

GENERAL FORMULA FOR OPINION UPDATE FOR ARBITRARY GROUP SIZE

(generalization of Cheon-Galam 2017)

$$P_{+}^{(r)} = \sum_{\mu=0}^{r} P_{+}^{(r,\mu)}, \quad P_{A}^{(r)} = \sum_{\mu=0}^{r} P_{A}^{(r,\mu)}, \quad P_{B}^{(r)} = \sum_{\mu=0}^{r} P_{B}^{(r,\mu)}.$$
• $\mu < r/2$

$$P_{+}^{(r,\mu)}(p,a,b;f_{-}) = \binom{r}{\mu} p^{\mu-1} (1-p)^{r-\mu} \cdot \frac{\mu}{r} a(1+f_{-}),$$

$$P_{A}^{(r,\mu)}(p,a;f_{-}) = \binom{r}{\mu} p^{\mu-1} (1-p)^{r-\mu} \cdot \frac{\mu}{r} a(1+f_{-}),$$

$$P_{B}^{(r,\mu)}(p,b;g_{j}) = \binom{r}{\mu} p^{\mu} (1-p)^{r-\mu-1} \cdot \frac{r-\mu}{r} b(1+g_{-}),$$

• μ > r/2

$$\begin{split} P_{+}^{(r,\mu)}(p,a,b;g_{+}) &= \binom{r}{\mu} p^{\mu} (1-p)^{r-\mu} - \binom{r}{\mu} p^{\mu} (1-p)^{r-\mu-1} \cdot \frac{r-\mu}{r} b(1+g_{+}), \\ P_{A}^{(r,\mu)}(p,a;f_{+}) &= \binom{r}{\mu} p^{\mu-1} (1-p)^{r-\mu} \cdot \frac{\mu}{r} a(1+f_{+}), \\ P_{B}^{(r,\mu)}(p,b;g_{+}) &= \binom{r}{\mu} p^{\mu} (1-p)^{r-\mu-1} \cdot \frac{r-\mu}{r} b(1+g_{+}). \end{split}$$

"DYNAMICAL" OPINION DYNAMICS

- Evolution equation for majority and assertive minorities r=3 $P_{+}^{(3)}(p, a, b; f, g) = 3p^2 - 2p^3 + (1 + f_{-})(1 - p)^2 a - (1 + g_{+})p^2 b$ $+ \frac{1}{3}f_A(1 - p - b)^3 - \frac{1}{3}g_B(p - a)^3$ $P_A^{(3)}(p_t, a_t, b_t; f, g) = \{1 + f_{+} + (f_{-} - f_{+})(1 - p)^2\} a + \frac{1}{3}f_A(1 - p - b)^3$ $P_B^{(3)}(p_t, a_t, b_t; f, g) = \{1 + g_{-} + (g_{+} - g_{-})p^2\} b + \frac{1}{3}g_B(p - a)^3$ For full explicit expression for general r, see T.Cheon 2017 (in draft)
- Increase/decrease of hard-black in friendly environ $(1+f_+) < 1$; in hostile environ $(1+f_-) > 1$
- Increase/decrease of hard-white in friendly environ $(1+g_{-}) < 1$; in hostile environ $(1+g_{+}) > 1$

FIXED POINT AND LIMIT CYCLE

numerics with r=3; Phase space trajectories

 a^* (or b^*)~ 3-2 $\sqrt{2}$ 17% p^* (or 1- p^*)~ (2- $\sqrt{2}$)/2 29%

POLITICAL CYCLES MAJORITY-ALTERNATING CYCLE

POLITICAL CYCLES CYCLE WITHIN MINORITY

ON POLITICAL CYCLES

What our model predicts

 Minority cycle with ebb and flow of extremists

30% minority with 17% extremists

- Majority changing cycle with double period
 - extremists driving the early phase of take-over, then disappears

COMPLEXITIES

BASINS OF ATTRACTION OF TWO MINORITY-CYCLES

 three sections of initial value space {p₀, a₀, b₀} that results in black/ white minority cycles at "critical" parameters

SUMMARY

Tea, green & black

- Dynamical systems theoretical model public opinion developed
- The theory unifies opinion dynamics models of Galam and Mori- Hisakado with analytical expressions in the form of Polya urn
- Existence of political cycles in the model discovered which may be capturing some aspect of real politics

—> Toward the mathematical theory of politics!

Dedicated to our great Tea Mater, Petr Seba, for the occasion of his 60th birthday.