# The Brownian traveller on manifolds David KREJČIŘÍK

http://people.fjfi.cvut.cz/krejcirik

Czech Technical University in Prague



Dedicated to Petr Šeba on the occasion of his 60th birthday

Petr Šeba



Spectra, Algorithms and Data Analysis II, Hradec Králové, December 2006

## The Brownian motion

#### Robert Brown



1773–1858

#### Albert Einstein



#### Jean Baptiste Perrin



1870-1942

[Exner, Šeba 1989 (JMP)]

 $\exists$  stationary solutions of  $i \frac{\partial \Psi}{\partial \tau} = -\Delta \Psi$  in any locally *curved* Dirichlet strip  $\Omega \subset \mathbb{R}^2$ :



[Exner, Šeba 1989 (JMP)]

 $\exists \text{ stationary solutions of } i \frac{\partial \Psi}{\partial \tau} = -\Delta \Psi \text{ in any locally curved Dirichlet strip } \Omega \subset \mathbb{R}^2:$   $\Psi(x,\tau) = e^{-i\lambda\tau} \psi(x)$   $\begin{cases} -\Delta \psi = \lambda \psi \text{ in } \Omega \\ \psi = 0 \text{ on } \partial \Omega \end{cases}$ 

[Exner, Šeba 1989 (JMP)]

 $\exists$  stationary solutions of  $i \frac{\partial \Psi}{\partial \tau} = -\Delta \Psi$  in any locally *curved* Dirichlet strip  $\Omega \subset \mathbb{R}^2$ :  $\Psi(x,\tau) = e^{-i\lambda\tau} \,\psi(x)$  $\begin{cases} -\Delta \psi = \lambda \psi & \text{in } \Omega \\ \psi = 0 & \text{on } \partial \Omega \end{cases}$ 介  $\lambda_1 := \min \sigma(-\Delta) < \min \sigma_{ess}(-\Delta) =: E_1$ 0  $\lambda_1 \quad E_1$ 

[Exner, Šeba 1989 (JMP)]

 $\exists$  stationary solutions of  $i \frac{\partial \Psi}{\partial \tau} = -\Delta \Psi$  in any locally *curved* Dirichlet strip  $\Omega \subset \mathbb{R}^2$ :  $\Psi(x,\tau) = e^{-i\lambda\tau} \,\psi(x)$  $\begin{cases} -\Delta \psi = \lambda \psi & \text{in } \Omega \\ \psi = 0 & \text{on } \partial \Omega \end{cases}$ 介  $\lambda_1 := \min \sigma(-\Delta) < \min \sigma_{\rm ess}(-\Delta) =: E_1$ 0  $\lambda_1 \quad E_1$  $\downarrow$ solutions of  $\frac{\partial p}{\partial \tau} - \Delta p = 0$  have a slower decay in time:  $\max_{p_0} \frac{\|p(\cdot,\tau)\|_{L^2}}{\|p_0\|_{L^2}} = e^{-\lambda_1 \tau}$ 

[Exner, Šeba 1989 (JMP)]

 $\exists$  stationary solutions of  $i \frac{\partial \Psi}{\partial \tau} = -\Delta \Psi$  in any locally *curved* Dirichlet strip  $\Omega \subset \mathbb{R}^2$ :  $\Psi(x,\tau) = e^{-i\lambda\tau} \,\psi(x)$  $\begin{cases} -\Delta \psi = \lambda \psi & \text{in } \Omega \\ \psi = 0 & \text{on } \partial \Omega \end{cases}$ 介  $\lambda_1 := \min \sigma(-\Delta) < \min \sigma_{\rm ess}(-\Delta) =: E_1$ 0  $\lambda_1 \quad E_1$  $\downarrow$  $\max_{p_0} \frac{\|p(\cdot,\tau)\|_{L^2}}{\|p_0\|_{L^2}} = e^{-\lambda_1 \tau}$ solutions of  $\frac{\partial p}{\partial \tau} - \Delta p = 0$  have a slower decay in time:

the Brownian particle lives longer in a curved strip

#### Which geometry is better to travel in ?



#### Which geometry is better to travel in ?

Effect of the curvature of the ambient space? Euclidean space  $\mathbb{R}^2 \longrightarrow$  Riemannian manifold



#### Which geometry is better to travel in ?

Effect of the curvature of the ambient space? Euclidean space  $\mathbb{R}^2 \longrightarrow$  Riemannian manifold



critical





$$\frac{\partial p}{\partial \tau} - \Delta p = 0$$

$$\frac{\partial p}{\partial \tau} - \Delta p = 0$$

- $\rightarrow$  the ambient space is 2-dimensional
  - i.e. surface  $\Sigma$  of curvature K



$$\frac{\partial p}{\partial \tau} - \Delta p = 0$$

- $\rightarrow \text{ the ambient space is 2-dimensional}$ *i.e.* surface  $\Sigma$  of curvature K
- $\rightarrow$  the motion is quasi-1-dimensional



- i.e. the traveller is constrained to a vicinity of an infinite curve  $\Gamma$  of curvature k
- *i.e.* u = 0 off the strip  $\Omega := \{x \in \Sigma \mid \operatorname{dist}(x, \Gamma) < a\}$

$$\frac{\partial p}{\partial \tau} - \Delta p = 0$$

- $\rightarrow \quad \text{the ambient space is 2-dimensional} \\ i.e. \quad \text{surface } \Sigma \text{ of curvature } K$
- $\rightarrow$  the motion is quasi-1-dimensional



- i.e. the traveller is constrained to a vicinity of an infinite curve  $\Gamma$  of curvature k
- *i.e.* u = 0 off the strip  $\Omega := \{x \in \Sigma \mid \operatorname{dist}(x, \Gamma) < a\}$
- $\rightarrow$  the traveller is asymptotically Euclidean (*i.e.* K vanishes at infinity)

$$\frac{\partial p}{\partial \tau} - \Delta p = 0$$

- $\rightarrow \quad \text{the ambient space is 2-dimensional} \\ i.e. \quad \text{surface } \Sigma \text{ of curvature } K$
- $\rightarrow$  the motion is quasi-1-dimensional



- i.e. the traveller is constrained to a vicinity of an infinite curve  $\Gamma$  of curvature k
- *i.e.* u = 0 off the strip  $\Omega := \{x \in \Sigma \mid \operatorname{dist}(x, \Gamma) < a\}$
- $\rightarrow$  the traveller is asymptotically Euclidean (*i.e.* K vanishes at infinity)
- $\rightarrow$  the traveller is asymptotically geodetic (*i.e.* k vanishes at infinity)

$$\frac{\partial p}{\partial \tau} - \Delta p = 0$$

- $\rightarrow \quad \text{the ambient space is 2-dimensional} \\ i.e. \quad \text{surface } \Sigma \text{ of curvature } K$
- $\rightarrow$  the motion is quasi-1-dimensional



- i.e. the traveller is constrained to a vicinity of an infinite curve  $\Gamma$  of curvature k
- *i.e.* u = 0 off the strip  $\Omega := \{x \in \Sigma \mid \operatorname{dist}(x, \Gamma) < a\}$
- $\rightarrow$  the traveller is asymptotically Euclidean (*i.e.* K vanishes at infinity)
- $\rightarrow$  the traveller is asymptotically geodetic (*i.e.* k vanishes at infinity)

$$i K \longleftrightarrow$$
 large-time behaviour of  $p(x, \tau)$ ?





Enrico Fermi (1901–1954)



$$\Omega := \mathcal{L}(\Omega_0) \qquad \Omega_0 := \mathbb{R} \times (-a, a), \quad \mathcal{L} : \mathbb{R}^2 \to \Sigma : \quad \mathcal{L}(s, t) := \exp_{\Gamma(s)} \left( t \, N(s) \right)$$





$$\Omega := \mathcal{L}(\Omega_0) \qquad \Omega_0 := \mathbb{R} \times (-a, a), \quad \mathcal{L} : \mathbb{R}^2 \to \Sigma : \quad \mathcal{L}(s, t) := \exp_{\Gamma(s)} \left( t \, N(s) \right)$$

Laplace-Beltrami operator  $-\Delta = -|G|^{-\frac{1}{2}}\partial_i |G|^{\frac{1}{2}}G^{ij}\partial_j$  on  $L^2(\Omega_0, |G(s,t)|^{\frac{1}{2}}dsdt)$ 

 $a \rightarrow 0$ 

 $a \rightarrow 0$ 

## **Quasi-1-dimensional traveller**

 $h^{\frac{1}{2}}(-\Delta)h^{-\frac{1}{2}} = -|G|^{-\frac{1}{4}}\partial_i|G|^{\frac{1}{2}}G^{ij}\partial_j|G|^{-\frac{1}{4}} \quad \text{on} \quad L^2\big(\mathbb{R}\times(-a,a), ds\,dt\big)$ 

 $a \rightarrow 0$ 

 $h^{\frac{1}{2}}(-\Delta)h^{-\frac{1}{2}} = -|G|^{-\frac{1}{4}}\partial_i|G|^{\frac{1}{2}}G^{ij}\partial_j|G|^{-\frac{1}{4}} \quad \text{on} \quad L^2(\mathbb{R} \times (-a,a), ds dt)$  $= -\partial_i G^{ij}\partial_j + V$ 

 $a \rightarrow 0$ 

$$\begin{split} h^{\frac{1}{2}}(-\Delta)h^{-\frac{1}{2}} &= -|G|^{-\frac{1}{4}}\partial_i |G|^{\frac{1}{2}}G^{ij}\partial_j |G|^{-\frac{1}{4}} \quad \text{on} \quad L^2\big(\mathbb{R} \times (-a,a), ds \, dt\big) \\ &= -\partial_i G^{ij}\partial_j + V \\ &= -\partial_s \, h(s,t)^{-2} \, \partial_s - \partial_t^2 - \frac{5}{4} \frac{(h,s)^2}{h^4} + \frac{1}{2} \frac{h,ss}{h^3} - \frac{1}{4} \frac{(h,t)^2}{h^2} + \frac{1}{2} \frac{h,tt}{h} \end{split}$$

$$\begin{split} h^{\frac{1}{2}}(-\Delta)h^{-\frac{1}{2}} &= -|G|^{-\frac{1}{4}}\partial_i|G|^{\frac{1}{2}}G^{ij}\partial_j|G|^{-\frac{1}{4}} \quad \text{on} \quad L^2(\mathbb{R} \times (-a,a), ds \, dt) \\ &= -\partial_i G^{ij}\partial_j + V \\ &= -\partial_s \, h(s,t)^{-2} \, \partial_s - \partial_t^2 - \frac{5}{4} \frac{(h_{,s})^2}{h^4} + \frac{1}{2} \frac{h_{,ss}}{h^3} - \frac{1}{4} \frac{(h_{,t})^2}{h^2} + \frac{1}{2} \frac{h_{,tt}}{h} \\ &= -\partial_s^2 - \partial_t^2 - \frac{1}{2} \, K(s,0) - \frac{1}{4} \, k(s)^2 + \mathcal{O}(t) \\ & \uparrow \\ h(s,t) &= 1 - k(s) \, t - \frac{1}{2} \, K(s,0) \, t^2 + \mathcal{O}(t^3) \end{split}$$

 $a \rightarrow 0$ 

$$a \rightarrow 0$$

!!!

$$\begin{aligned} h^{\frac{1}{2}}(-\Delta)h^{-\frac{1}{2}} &= -|G|^{-\frac{1}{4}}\partial_{i}|G|^{\frac{1}{2}}G^{ij}\partial_{j}|G|^{-\frac{1}{4}} \quad \text{on} \quad L^{2}(\mathbb{R} \times (-a, a), ds dt) \\ &= -\partial_{i}G^{ij}\partial_{j} + V \\ &= -\partial_{i}h(s, t)^{-2}\partial_{s} - \partial_{t}^{2} - \frac{5}{4}\frac{(h, s)^{2}}{h^{4}} + \frac{1}{2}\frac{h, ss}{h^{3}} - \frac{1}{4}\frac{(h, t)^{2}}{h^{2}} + \frac{1}{2}\frac{h, tt}{h} \\ &= -\partial_{s}^{2} - \partial_{t}^{2} - \frac{1}{2}K(s, 0) - \frac{1}{4}k(s)^{2} + \mathcal{O}(t) \\ & \uparrow \\ h(s, t) &= 1 - k(s)t - \frac{1}{2}K(s, 0)t^{2} + \mathcal{O}(t^{3}) \end{aligned}$$
geometrically induced "quantum" 
$$\begin{cases} \text{well} &\Leftarrow K \ge 0 \quad \lor \quad k \ne 0 \\ \text{barrier} &\Leftarrow K \le 0 \quad \land \quad k = 0 \end{cases}$$

$$a \rightarrow 0$$

!!!

Heuristics: [Mitchell 2001] • Rigorous treatment: [Freitas, D.K. 2008], [Wittich 2008]
Abstract approach: [D.K., Raymond, Royer, Siegl 2017]

S







**Theorem (**[D.K. 2003 (JGP)]**)**.







**NB** K = 0 due to [Exner, Šeba 1989]



ND M = 0 due to [Exner, Seba 1969]

**Corollary.**  $||e^{\tau\Delta}||_{L^2 \to L^2} = e^{-\lambda_1 \tau}$  (slower decay)



*Proof.* Variational:  $\exists \psi$  such that  $ig\langle \psi, (-\Delta - E_1)\psiig
angle < 0.$ 

q.e.d.



















**Theorem (**[D.K. 2006 (JIA)], [Kolb, D.K. 2014 (JST)]**).** 

If 
$$K \leq 0$$
 and  $k = 0$  and  $a \ll 1$  then  $-\Delta - E_1 \geq \frac{c}{1+s^2}$ 

Hardy inequality

where c > 0 if K is not identically zero and has compact support.

Corollary. 
$$0 E_1$$

& spectral stability (subcriticality)



![](_page_37_Picture_2.jpeg)

**Theorem (**[D.K. 2006 (JIA)], [Kolb, D.K. 2014 (JST)]**).** 

If  $K \leq 0$  and k = 0 and  $a \ll 1$  then  $-\Delta - E_1 \geq \frac{c}{1+s^2}$ 

Hardy inequality

where c > 0 if K is not identically zero and has compact support.

**Corollary.** 
$$\underbrace{0}_{E_1}$$
 & spectral stability (subcriticality)

**Theorem (**[Kolb, D.K. 2014]**)**.

$$\|e^{\tau\Delta}\|_{L^2_w \to L^2} \asymp (1+\tau)^{-3/4+\delta} e^{-E_1 \tau}$$

(faster decay)

![](_page_38_Figure_1.jpeg)

*Proof.* Self-similarity transform + weighted Sobolev spaces + Hardy inequality *q.e.d.* 

Model : quasi-1-dimensional Brownian particle in a 2-dimensional curved space

Model : quasi-1-dimensional Brownian particle in a 2-dimensional curved space

| Moral : | curvature         | positive                                 | zero                        | negative                      |
|---------|-------------------|------------------------------------------|-----------------------------|-------------------------------|
|         | transport         | bad                                      | critical                    | good                          |
|         | probability decay | $e^{(E_1 - \lambda_1)\tau} e^{-E_1\tau}$ | $\tau^{-1/4} e^{-E_1 \tau}$ | $\tau^{-3/4} e^{-E_1 \tau} *$ |

\* fine effect of transience, faster cool down / death of the Brownian particle

Model: quasi-1-dimensional Brownian particle in a 2-dimensional curved space

Moral :curvaturepositivezeronegativetransportbadcriticalgoodprobability decay $e^{(E_1 - \lambda_1) \tau} e^{-E_1 \tau}$  $\tau^{-1/4} e^{-E_1 \tau}$  $\tau^{-3/4} e^{-E_1 \tau} *$ \*fine effect of transience, faster cool down / death of the Brownian particle

#### Analogy: (negative curvature)

 $\rightarrow$  twisting

![](_page_41_Figure_5.jpeg)

→ magnetic field [D.K. 2013 (CV&PDE)], [Cazacu, D.K. 2016 (CPDE)]

Model: quasi-1-dimensional Brownian particle in a 2-dimensional curved space

Moral :curvaturepositivezeronegativetransportbadcriticalgoodprobability decay $e^{(E_1 - \lambda_1)\tau} e^{-E_1\tau}$  $\tau^{-1/4} e^{-E_1\tau}$  $\tau^{-3/4} e^{-E_1\tau} *$ 

\* fine effect of transience, faster cool down / death of the Brownian particle

#### Analogy : (negative curvature)

 $\rightarrow$  twisting

![](_page_42_Figure_6.jpeg)

→ magnetic field [D.K. 2013 (CV&PDE)], [Cazacu, D.K. 2016 (CPDE)]

Open problems :

- ¿ better topology than  $L^2_w \to L^2$  with  $w(x) = e^{x^2/4}$  ?
- ¿ slow decay of curvature at infinity ?
- *i* general conjecture: Hardy inequality  $\Rightarrow$  faster cool down ?

Happy birthday, Petr !

![](_page_43_Picture_1.jpeg)

Yigal Ozeri: Territory, 2012 (oil on canvas, 80 × 120 in)