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Happy birthday, Petr!

Here should be a photo, but I do not have any...



‘Quantum chaology’

I What is quantum chaos?

I No easy answer, A gimmick: ‘quantum chaology’- investigations of quantum
properties of systems that are classically chaotic.

I Which properties?

I What does it mean that a quantum system is classically chaotic/nonitegrable?
(Some concrete, and fairly universal notion of ‘classical limit’ needed).

I How to check that the system is indeed chaotic/nonintegrable in this limit?



(Semi)-classics of systems of two-level atoms

I A two-level system

I N atoms

Si :=
N∑

n=1

σ
(n)
i , i = +,−, z

I Si fulfill the same commutation relations as σ−, σ+, σz

I more technically: they span some of the same Lie algebra as the single-atom
operators do (the algebra sl2(C)) but of a different dimension (reducible - ‘addition
of spins’)

I (Semi)-classics: N →∞



Quantum evolution, expectation values, classical evolution

I (Effective) Hamiltonian: H = H(~S)

I H commutes with all Casimir invariants of the relevant real algebra (su2, su3) - we
can treat independently each irreducible representation

I Heisenberg equations of motion: d
dt Si =

i
~ [H, Si] = Fi(S)

I Expectation values: si := ~〈Si〉 := ~〈ψ|Si|ψ〉

I Dynamics: d
dt si = ~〈Fi(S)〉 6= ~Fi(〈S〉)

I In the classical limit “~→ 0” (which should correspond roughly to N →∞ or the
dimension of the representation going to infinity = “large quantum numbers”), we
would like to have d

dt si = fi(s), for appropriately scaled si (with N or the dimension
of a representation).

I Here, the scaling: si = 〈Si〉/N (obvious?); the dimension of the largest irreducible
representation is proportional to N so both scalings coincide.



More technically...

I Problem: Find an appropriate classical phase-space (manifold with a
canonical=Poisson structure) for the classical evolution.

I We look for a classical phase space M equipped with Poisson brackets { , } and a
map µ̃ from the algebra of observables (here sl(2C), such that (Dirac quantisation
condition),

µ̃([a, b]) = {µ̃(a), µ̃(b)}

I General procedure

I M is the manifold of coherent states (all states obtained from the unique eigenvector of
Sz with the largest spin component along z bu unitary transformations of the
corresponding group SU(2)).

I M is two-dimensional, (in fact it is the unit sphere)

I On M there is a natural Poisson structure,

I µ̃(a)(γ) = 〈γ|a|γ〉 fulfills Dirac q. c. (γ is a point on the sphere).

I Classical limit = dimension of representation→∞ ("large spin")

I Remark For two-level systems we can’t expect anything interesting: the phase
space is two-dimensional (one degree of freedom), the Hamiltonian itself is a
constant of motion = each system is integrable.



Multilevel systems

I Three levels

I N-atoms: Sij :=
N∑

n=1
τ
(n)
ij

I Applications
I Semiclassical laser theory (Seeger, Kolobov, Kuś, Haake, 1996)

I Nuclear shell models

I Cold atom/ion systems (Graß, Juliá-Díaz, Kuś, Lewenstein, 2013)

I ...



I The whole construction works (mutatis mutandis) also in this case

I Classical phase space M - manifold of coherent states with the unique, natural Poisson
brackets

I Classical dynamics: d
dt s = {Hcl, s}

s, Hcl - appropriately scaled expectation values in coherent states.

I The number of classical degrees of freedom: f = dim M/2

I The proper scaling: s = ~〈S〉, ~→ 0

I The volume of the phase space ∼ ~−f

I For two-level systems the situation is simple, ~ ∼ 1/j = N/2 - the total spin

There is only one way to the classical limit j→∞



Two vs three (and more) levels

I For three-level systems it is more interesting

I A representation and, consequently, its dimension and the coherent states are uniquely
determined not by one number (j in the two-level case), but bu two such numbers (say
λ1 and λ2 ) in fact by the maximal eigenvalues of the common eigenvector of two
commuting operators

T3 := (S11 − S22) , Y := (S11 + S22 − 2S33)

I The classical limit (corresponding to j→∞ for two-level systems) is
(λ1, λ2) = k(c1, c2), k →∞, c1, c2 - fixed (Schäfer, Kuś 2006, 2007)

I a 6 - dimensional classical phase-space (3 degrees of freedom) for λ1λ2 6= 0
I a 4 - dimensional classical phase-space (2 degrees of freedom) for vanishing λ1 or λ2

I Hamiltonians for systems with 2 degrees of freedom with an additional integral of motion
are integrable (no chaos)

I Hamiltonians for systems with 3 degrees of freedom are (in general) chaotic, if there is
only one additional constant of motion

I Quantum Hamiltonian (Gnutzmann, Haake, Kuś, 2000)

H = BT3 + J~2
(

S2
12 + S2

21

)
+ K~2

(S13S32 + S23S31)

has and additional constant of the motion [H, Y] = 0
I Depending on how we reach the classical limit representations we obtain integrable

(non-chaotic) and (possibly) nonintegrable (chaotic) classical system



Quantum signatures of chaos

Classical integrability can be traced on the quantum level by distribution of spacing
between neighboring energy levels



Level spacings
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How to prove that a system is non-integrable?

I A general idea: if a nonlinear system of differential equations is integrable then its
linearization is also integrable

I Hence: if the linearization is non-integrable so is the original system

I Hence: the problem reduces to showing that the linearization

y(n) + an−1y(n−1) + . . .+ a1y′ + a0y = 0

where ak are some functions of the independent variable (time) is non-integrable

I One mimics then the classical Galois theory concerning solubility of algebraic
(polynomial) equations

I extend the field of coefficients by new elements obtained by algebraic operations and
taking roots until the filed contains all solutions

I determine the Galois group = the group of all automorphisms of the extended field
leaving the original field of coefficients invariant

I if the group is solvable (a technical notion from the group theory) the algebraic equation
can be solved by algebraic means.

I For differential equations one proceeds analogously
I extends the field of coefficients ak by taking algebraic functions of them, integrals of

them and integrals of exponentials of them (‘integrability in quadratures’ equivalent by
the Liouville-Arnold theorem to existence of needed number of integrals of motion)

I if the corresponding Galois group is not solvable the equation in not integrable in
quadratures = there in not enough integrals of motion

(Sawicki, Kuś, 2010)



How to do it (experimentally)?

I Ions (Yb+) in a linear trap + three pairs of counter-propagating laser beams creating standing
waves

I Ions are in the trapping potential and coupled by the Coulomb repulsion, phonon modes
couple to spin operators Skl (the interaction of ions with standing waves is position-dependent)

I Effective Hamiltonian for spin variables

H = BT3 + J
∑
k<l

SklSlk

has the desired properties
(T. Graß, B. Juliá-Díaz, M. Kuś, M. Lewenstein, Phys. Rev. Lett. 111, 090404 (2013))



Dynamics
I It is hard to recover the spectrum
I The number of ions is (at most) moderate
I Signature of quantum chaos - sensitivity to parameter changes
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Outlook. Work in progress

I Integrability in the classical limit (dimension of representation→∞) visible
already in quantum case for large dimensions of representations

I This fact should be recoverable from analysis of the relevant differential Galois
groups

I In the coherent states representation

Sij = aij(γ;λ1, λ2) +
∑

k

bk
ij(γ;λ1, λ2)

∂

∂γi

where γi ∈ C are coordinates on M for given (finite) λ1, λ2

I All relevant operators (in particular, the Hamiltonian) are expressible via above...

I The differential Galois group of the dynamical equations depends on (λ1, λ2)

I How to find it (in principle we know, what should be done, but...



Summary
I "Exotic" quantum chaotic system

I Experiment accessible (or at lest, close to...) using available technologies

I Differences between chaotic and regular system visible "far from classical limit"
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I A. Sawicki, M. Kuś, Classical nonintegrability of a quantum chaotic SU(3) Hamiltonian
system, Physica D, 239 (2010) 719–726
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