Fermi's rule and high-energy asymptotics for quantum graphs

Jiří Lipovský ¹

University of Hradec Králové, Faculty of Science jiri.lipovsky@uhk.cz

joint work with P. Exner

Hradec Králové, May 10, 2017

¹Support of project 15-14180Y "Spectral and resonance properties of quantum models" of the Czech Science Foundation is acknowledged.

Description of the model

- set of ordinary differential equations
- graph consists of set of vertices V, set of not oriented edges (both finite ε and infinite ε_∞).
- Hilbert space of the problem

$$\mathcal{H} = \bigoplus_{(j,n)\in I_{\mathcal{L}}} L^2([0, I_{jn}]) \oplus \bigoplus_{j\in I_{\mathcal{L}}} L^2([0,\infty)).$$

states described by columns

$$\psi = (f_{jn} : \mathcal{E}_{jn} \in \mathcal{E}, f_{j\infty} : \mathcal{E}_{j\infty} \in \mathcal{E}_{\infty})^{T}.$$

• the Hamiltonian acting as $-\frac{d^2}{dx^2}$ – corresponds to the Hamiltonian of a quantum particle for the choice $\hbar = 1$, m = 1/2

Domain of the Hamiltonian

- domain consisting of functions in W^{2,2}(Γ) satisfying coupling conditions at each vertex
- coupling conditions given by

$$(U_{\nu}-I_{\nu})\Psi_{\nu}+i(U_{\nu}+I_{\nu})\Psi_{\nu}'=0.$$

where $\Psi_v = (\psi_1(0), \dots, \psi_d(0))^T$ and $\Psi'_v = (\psi_1(0)', \dots, \psi_d(0)')^T$ are the vectors of limits of functional values and outgoing derivatives where *d* is the number edges emanating from the vertex *v* and U_v is a unitary $d \times d$ matrix

Examples of coupling conditions

• δ -conditions

 $\begin{array}{lll} f(\mathcal{X}) &\equiv & f_i(\mathcal{X}) = f_j(\mathcal{X}) & \text{for all } i, j \in \{1, \dots, n+m\} \\ & \sum_{j=1}^{n+m} f'_j(\mathcal{X}) &= & \alpha f(\mathcal{X}) \end{array}$

• $\delta_{\rm s}^{\prime}\text{-conditions}$

$$\begin{array}{lll} f'(\mathcal{X}) &\equiv & f'_i(\mathcal{X}) = f'_j(\mathcal{X}) \,, & \text{ for all } i, j \in \{1, \dots, n+m\} \\ \sum_{j=1}^{n+m} f_j(\mathcal{X}) &= & \beta f'(\mathcal{X}) \,. \end{array}$$

- standard conditions (sometimes called Kirchhoff) represent a special case of δ -condition for $\alpha = 0$.
- **Dirichlet conditions** mean that all the functional values are zero at the vertex.
- **Neumann conditions**, on the other hand, mean that all the derivatives vanish at the vertex.

Resolvent resonances

- poles of the meromorphic continuation of the resolvent $(H \lambda id)^{-1}$
- another definition: $\lambda = k^2$ is a resolvent resonance if there exists a generalized eigenfunction $f \in L^2_{loc}(\Gamma)$, $f \neq 0$ satisfying $-f''(x) = k^2 f(x)$ on all edges of the graph and fulfilling the coupling conditions, which on all external edges behaves as $c_j e^{ikx}$.

Fermi's rule for graphs with standard condition

Theorem (Lee, Zworski)

Consider a simple eigenvalue $k_0^2 > 0$ of the Hamiltonian $H \equiv H(0)$ and let u be the corresponding eigenfunction. Then for $|k| \le k_{\max}$ there exists a smooth function $t \mapsto k(t)$ such that $k^2(t)$ is the resolvent resonance of H(t). Moreover, we have

$$\begin{split} \operatorname{Im} \ddot{k}(0) &= -\sum_{s=N+1}^{N+M} |F_s|^2, \\ F_s &= k_0 \langle \dot{a}u, e^s(k_0) \rangle + \\ &+ \frac{1}{k_0} \sum_{v \in \Gamma} \sum_{e_j \ni v} \frac{1}{4} \dot{a}_j (3\partial_\nu u_j(v) \overline{e_j^s(k,v)} - u(v) \partial_\nu \overline{e_j^s(k,v)}), \end{split}$$

- double dot denotes the second derivative with respect to t, $\langle \bullet, \bullet \rangle$ is the inner product in $\bigoplus_{j=1}^{N} L^2([0, \ell_j])) \oplus \bigoplus_{s=N+1}^{N+M} L^2([0, \infty))$, the sum $\sum_{\nu \in \Gamma}$ goes through all the vertices of the graph Γ , $\partial_{\nu} u_j(0) = -u'_j(0)$ and $\partial_{\nu} u_j(\ell_j) = u'_j(\ell_j)$.
- $\ell_j(t) = e^{-a_j(t)}\ell_j$, $a_j(0) = 0$, $\dot{a}_j = \dot{a}_j(0)$
- for k² ∉ σ_{pp}(H) we define generalized eigenfunctions e^s(k), N + 1 ≤ s ≤ N + M as

$$e^s(k) \in \mathcal{D}_{\mathrm{loc}}(H)\,, \quad (H-k^2)e^s(k)=0\,, \ e^s_j(k,x)=\delta_{js}\mathrm{e}^{-ikx}+s_{js}(k)\mathrm{e}^{ikx}\,, \quad N+1\leq j\leq N+M\,,$$

where e_j^s are the half-line components of e^s . This family can be holomorphically extended to the points of the spectrum of H and therefore it is defined for all k.

Pseudo orbit expansion for the resonance condition

- there is a known method for finding the spectrum of a compact graph by the pseudo orbit expansion
- the vertex scattering matrix maps the vector of amplitudes of the incoming waves into a vector of amplitudes of the outgoing waves $\vec{\alpha}_{\nu}^{\text{out}} = \sigma^{(\nu)} \vec{\alpha}_{\nu}^{\text{in}}$
- for a non-compact graph we similarly define effective vertex scattering matrix $\tilde{\sigma}^{(v)}$

Theorem

Let us assume the vertex connecting n internal and m external edges. The effective vertex-scattering matrix is given by

$$\tilde{\sigma}(k) = -[(1-k)\tilde{U}(k) - (1+k)I_n]^{-1}[(1+k)\tilde{U}(k) - (1-k)I_n]$$

- we define the directed graph Γ₂: each edge of the compact part of Γ is replaced by two directed edges of the same lengths and opposite directions
- periodic orbit γ is a closed path on Γ_2
- pseudo orbit $\tilde{\gamma}$ is a collection of periodic orbits
- irreducible pseudo orbit $\bar{\gamma}$ is a pseudo orbit, which does not use any directed edge more than once
- we define length of a periodic orbit by $\ell_{\gamma} = \sum_{j,b_j \in \gamma} \ell_j$; the length of pseudo orbit (and hence irreducible pseudo orbit) is the sum of the lengths of the periodic orbits from which it is composed
- we define product of scattering amplitudes for a periodic orbit $\gamma = (b_1, b_2, \dots, b_n)$ as $A_{\gamma} = S_{b_2b_1}S_{b_3b_2}\dots S_{b_1b_n}$, where $S_{b_2b_1}$ is the entry of the matrix S in the b_2 -th row and b_1 -th column; for a pseudo orbit we define $A_{\tilde{\gamma}} = \prod_{\gamma_n \in \tilde{\gamma}} A_{\gamma_i}$
- by $m_{\tilde{\gamma}}$ we denote the number of periodic orbits in the pseudo orbit $\tilde{\gamma}$

Theorem

The resonance condition is given by the sum over irreducible pseudo orbits

$$\sum_{\bar{\gamma}} (-1)^{m_{\bar{\gamma}}} A_{\bar{\gamma}} \,\mathrm{e}^{ik\ell_{\bar{\gamma}}} = 0 \,.$$

- in general $A_{\bar{\gamma}}$ can be energy dependent, but this is not the case for standard coupling.
- idea of the proof: the permutations in the determinant can be represented as product of disjoint cycles

Fermi's rule for graphs with general coupling

- let the internal graphs edge lengths $\ell_j = \ell_j(t)$ depend on the parameter t as C^2 functions
- suppose that at least some of them are non-constant in the vicinity of t = 0 and that at that point the system has an eigenvalue $k_0^2 > 0$ embedded in the continuous spectrum
- $\dot{k} \in \mathbb{R}$, where dot signifies the derivative with respect to t.
- Furthermore, we have

$$egin{aligned} \dot{k}\sum_{ar{\gamma}}\left(\ell_{ar{\gamma}}A_{ar{\gamma}}(k)-irac{\partial A_{ar{\gamma}}(k)}{\partial k}
ight)(-1)^{m_{ar{\gamma}}}\,\mathrm{e}^{ik\ell_{ar{\gamma}}}+ \ +k\sum_{ar{\gamma}}\dot{\ell}_{ar{\gamma}}(-1)^{m_{ar{\gamma}}}A_{ar{\gamma}}(k)\,\mathrm{e}^{ik\ell_{ar{\gamma}}}=0\,, \end{aligned}$$

• we have a (more complicated) condition from which one finds \ddot{k}

Example of the trajectory of a resonance

Figure: The resonance trajectory for the graph consisting of a circle with two attached half-lines with δ -conditions coming from the eigenvalue with $k_0 = 2\pi$, $\ell_1 = 1 - t$, $\ell_2 = 1 + 2t$, $\alpha = 10$. The trajectory is shown for $t \in (-0.2, 0.2)$ and it is approximated by the dashed curve $k = k_0 + t\dot{k} + \frac{t^2}{2}\text{Re}\,\ddot{k} + \frac{it^2}{2}\text{Im}\,\ddot{k}$ with $\dot{k} = -\pi$, Re $\ddot{k} = 75.61$, Im $\ddot{k} = -44.41$.

High-energy asymptotics of resonances for $\delta\text{-coupling}$

Theorem (Exner, J.L.)

Consider a graph Γ with a δ -coupling at all the vertices. Its resonances converge to the resonances of the same graph with the standard conditions as their real parts tend to infinity.

• idea of the proof: the corresponding vertex scattering matrix for $\delta\text{-condition}$ converges to the vertex scattering matrix for standard condition

Figure: Illustration to example with a circle and two attached half-lines with δ -conditions with the parameters $\ell_1 = 1$; $\ell_2 = 1$; $\alpha_1 = 1$; $\alpha_2 = 1$. Resonances for δ -condition denoted by blue dots, resonances for standard condition by red crosses.

High-energy asymptotics of resonances for δ'_s -coupling

Theorem (Exner, J.L.)

The resonances of the graph with a δ'_{s} coupling conditions at the vertices converge to the eigenvalues of the graph with Neumann (decoupled) conditions as their real parts tend to infinity.

• idea of the proof: again, the corresponding vertex-scattering matices converge to each other

High-energy asymptotics of resonances for δ'_s -coupling

Theorem (Exner, J.L.)

The resonances of the graph with δ'_s coupling conditions at the vertices, where the half-lines are attached, and arbitrary self-adjoint coupling at the other vertices satisfy

Im
$$k \to 0$$
 as $|k| \to \infty$.

Moreover, if the graph is equilateral with $\delta_{\rm s}^\prime,$ then the resonances satisfy

$$\operatorname{Im} k_n = \mathcal{O}\left((\operatorname{Re} k_n)^{-2} \right) \,, \quad \operatorname{Re} \left(k_n - k_{0n} \right) = \mathcal{O}\left((\operatorname{Re} k_n)^{-1} \right)$$

as $\operatorname{Re} k_n \to \infty$, where $k_{0n} = n\pi/\ell_0$.

• idea of the proof: the resonances converge to the eigenvalues of Neumann Hamiltonian, where the half-lines are fully decoupled from the internal part of the graph

Figure: Illustration to example with a circle and two attached half-lines with δ -conditions with the parameters $\ell_1 = 1$; $\ell_2 = 1$; $\beta_1 = 1$; $\beta_2 = 1$.

Thank you for your attention!

Articles on which the talk was based

M. Lee, M. Zworski: A Fermi golden rule for quantum graphs, *J. Math. Phys.* **57**, 092101 (2016).

P. Exner, J. Lipovský: Pseudo-orbit approach to trajectories of resonances in quantum graphs with general vertex coupling: Fermi rule and high-energy asymptotics, *J. Math. Phys.* **58** (2017), 042101