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Classically, always completely integrable.
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1
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+
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2

2
+ V(q1, q2)

Classically, nonintegrable in general.

Confinement occurs not only due to energy barriers, but also dynamical barriers
restrict the classical motion
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Discrete maps (more generally)

Forbidden process in classical dynamics

Aa
⋂

F−n(Bb) = ∅ for ∀n, ifAa,Bb are dynamically separated.

F :
(

p′
q′

)
=

(
p − V′(q)

q + p′

)

Semiclassical approach

Complex paths and quantum tunneling Instanton

Quantum tunneling in double well potential
Instanton

it

x

Quantum tunneling in multidimensions

1D double well potential

2D double well potential

Quantum tunneling and complex paths

Flooding induced by destructing coherence in the chaotic region

Why flooding does not occur ?

Amphibious nature of complex orbits

- Exponentially many complex orbits connect regular states a and chaotic
states b.

- The orbits behave as regular orbits when wander stay in the regular region,
while they become chaotic after reaching the chaotic sea.

-

Complex orbits contributing to semiclassical propagator

γ : classical orbits connecting a and b

γ is approximated by Ws(p)

γ′ is approximated by Ws(p′)

γ′′ is approximated by Ws(p′′)
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Classical dynamics in mixed phase space

Area-preserving map

F :
(

p′
q′

)
=

(
p − V′(q)

q + p′

)

Forbidden process in classical dynamics

Aa ∩ F−n(Bb) = ∅ for ∀n, ifAa,Bb(∈ R) are dynamically separated.

Quantum map

K(a, b) = ⟨b|Ûn|a⟩ =
∫
· · ·

∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Quantum map

Û = e−
i
!T(p̂)e−

i
!V(q̂)

Propagator

K(a, b) = ⟨b|Ûn|a⟩ =
∫
· · ·

∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Tunneling process in quantum dynamics

K(a, b) ! 0 even ifAa,Bb(∈ R) are dynamically separated.
q p

s ! 0，β = ∞ s ! 0，β = 2 s ! 0，β = 0.1
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∫
· · ·
∫ ∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

Quantum map
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∫ +∞

−∞
· · ·
∫ +∞

−∞

∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

|a⟩ : initial state |b⟩ : final state

Semiclassical approximation (Van-Vleck, Gutzwiller)

Ksc(a, b) =
∑

γ

A(γ)
n (a, b) exp

{ i
!

S(γ)
n (a, b)

}

A = { (p, q) ∈ C2 | A(p, q) = a } : initial set

B = { (p, q) ∈ C2 | B(p, q) = b } : final set

If Fn(A) ∩ B = ∅, then γ should be complex.
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Ksc(a, b) =
∑

γ

A(γ)
n (a, b) exp

{ i
!

S(γ)
n (a, b)

}

A = { (p, q) ∈ C2 | A(p, q) = a } : initial set

B = { (p, q) ∈ C2 | B(p, q) = b } : final set

If Fn(A) ∩ B = ∅, then γ should be complex.



2-D autonomous Hamiltonian H(q1, q2, p1, p2)

Constant of motion: H(q1, q2, p1, p2) = E

Poincaré map F : Σ !→ Σ is area-preserving (symplectic)

Action of the closed loops C

S[C] =
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C
p · dq − Hdt

Difference of action of arbitrary closed loops C and C′

S[C] − S[C′] =
∫

T
∇ × A · d2s (A = (p, 0,−H))

Since ∇ × A = −(q̇, ṗ,−1), and the Hamiltonian vector field is parallel to the tube T ,

S[C] = S[C′]

On the constant energy surface

S[C] =
∮

C
p · dq

instanton
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Natural boundary

As β (resp. M) increases, invariant curves obtained by integrable approxima-
tion well approximate KAM curves on R2.

Turning points on R2 or close to R2 become dense, which makes the leading
semiclassical approximation invalid.

With an increase in β, invariant curves for the integrable map (g = 0, s = 0)
well approximate KAM curves on R2.

Analytic continuation of
an invariant curve

2-D autonomous Hamiltonian H(q1, q2, p1, p2)

Constant of motion: H(q1, q2, p1, p2) = E
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How are disconnected regions connected ?



Complex dynamics in 1-dimensional maps

1-dimensional maps F : C !→ C

F : z′ = F(z)

Classify the orbits according to the behavior of n → ∞

I = { z ∈ C | lim
n→∞

Fn(z) = ∞ } : Set of escaping points

K = { z ∈ C | lim
n→∞

Fn(z) is bounded } : Filled Julia set

In particular

J = ∂K : Julia set

F = C − J : Fatou set

Note: Alternative definitions for FP, JP based on

(1) normal family, (2) equicontinuity, (3) density of periodic oribts
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Julia set in 1-D dynamics

・ F(z) = z2

I = { |z| > 1 }, K = { |z| ≤ 1 }, J = { |z| = 1 }

- z = 0 and z = ∞ are both attracting fixed points of F.
The points z ∈ I tend to∞ and also the points z ∈ K − J converge to
z = 0 monotonically.

- The orbits z ∈ J are chaotic.
Putting z = e2πiθ, then the map on J can be reduced to θ %→ 2θ (mod 1).
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・ F(z) = z2 + c

The behavior around z = 0

Theorem (Koenigs) F(z) is holomorphic near z = 0 and has the
Taylor expansion

F(z) = λz + c2z2 + · · · (0 < |λ| < 1)

Then there exists a conformal map φ : U → C which satisfies the
functional equation (Schröder equation)

φ
(
F(z)
)
= λφ(z) (z ∈ U)

where U is a neighborhood of z = 0.

Note : If |λ| > 1, then one can show the same assertion by considering
the inverse function.

z = 0 z = ∞

The behavior around z = 0

Theorem (Koenigs) F(z) is holomorphic near z = 0 and has the
Taylor expansion

F(z) = λz + c2z2 + · · · (0 < |λ| < 1)

Then there exists a conformal map φ : U → C which satisfies the
functional equation (Schröder equation)
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Complex dynamics in 2-dimensional maps

Quantum tunneling in multidimension ?

How are disconnected regions connected ?

2-dimensional maps F : C2 !→ C2

F :
(

z′
1

z′
2

)
=

(
f (z1, z2)
g(z1, z2)

)

Orbits are classified according to the behavior of n → ±∞

I± = { (z1, z2) ∈ C2 | lim
n→∞

F±n(z1, z2) = ∞ }
K± = { (z1, z2) ∈ C2 | lim

n→∞
F±n(z1, z2) is bounded in C2 }

In particular

K = K+ ∩ K− : filled Julia set

J± = ∂K± : forward (resp. backward) Julia set

J = J+ ∩ J− : Julia set
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Stable and unstable manifold theorem

F :
(

p′
q′

)
=

(
p + V′(q)

q + p′

)
( V(q) : polynomial )

Theorem (Bedford-Smillie 1991) For any unstable periodic orbits p,

Ws(p) = J+ and Wu(p) = J−

where Ws(p) (resp.Wu(p)) denotes stable (resp. unstable) manifold for p and

J± = ∂K± is called the forward (backward) Julia set.

Here, K± = { (p, q) ∈ C2 | ∥Fn(p, q)∥ is bounded (n → ±∞) }

Note : Ws(p) and Wu(p) are both locally 1-dimensional complex (2-dimensional

real) manifold in C2.
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J± = ∂K± is called the forward (backward) Julia set.

Here, K± = { (p, q) ∈ C2 | ∥Fn(p, q)∥ is bounded (n → ±∞) }
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real) manifold in C2.
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Quantum tunneling in double wells

Quantum tunneling in multidimensions

1D double well potential

2D double well potential

Quantum tunneling and complex paths

Flooding induced by destructing coherence in the chaotic region

Why flooding does not occur ?

Amphibious complex orbits and flooding

Amphibious nature of complex orbits

- The orbits behave as regular orbits when they stay in the regular region,
while they become chaotic after reaching the chaotic sea.

- Exponentially many complex orbits connect regular chaotic states and flood
the entire region.

-

- Exponentially many complex orbits connect regular states a and chaotic
states b.

- The orbits behave as regular orbits when wander stay in the regular region,
while they become chaotic after reaching the chaotic sea.

-

Complex orbits contributing to semiclassical propagator
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∫ +∞

−∞
· · ·
∫ +∞

−∞

∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

|a⟩ : initial state |b⟩ : final state

Semiclassical approximation (Van-Vleck, Gutzwiller)

Ksc(a, b) =
∑

γ

A(γ)
n (a, b) exp

{ i
!

S(γ)
n (a, b)

}

A = { (p, q) ∈ C2 | A(p, q) = a } : initial set

B = { (p, q) ∈ C2 | B(p, q) = b } : final set

If Fn(A) ∩ B = ∅, then γ should be complex.

Note:
the final form does not change if the smoothing function ‘ tanh’ is replaced by ‘ arctan’.
Quasi-periodic kicked rotors

(Casati-Guarneri-Shepelyansky 1989, Chabé et al 2008)

(Hufnagel-Ketzmerick-Otto-Schanz, 2002, Bäcker-Ketzmerick-Monasta, 2005)

Arbitrary itineracy p→ p′ → p′′ → · · ·
is possible after reaching R2.

Propagator:

K(a, b) = ⟨b|Û|a⟩ =
∫
· · ·

∫ ∏

j

dqj

∏

j

exp
[

i
!

S({qj}, {pj})
]

Semiclassical approximation

Ksc(a, b) =
∑

γ

A(γ)
n (a, b) exp

[
i
!

S(γ)
n (a, b)

]

Natural boundary

initial state a

Quantum tunneling in double wells

Quantum tunneling in multidimensions

1D double well potential

2D double well potential

Quantum tunneling and complex paths

Flooding induced by destructing coherence in the chaotic region

Why flooding does not occur ?

Amphibious complex orbits and flooding

Amphibious nature of complex orbits

- Exponentially many complex orbits connect regular states a and chaotic
states b.

- The orbits behave as regular orbits when wander stay in the regular region,
while they become chaotic after reaching the chaotic sea.

-

Complex orbits contributing to semiclassical propagator

γ : classical orbits connecting a and b

γ is approximated by Ws(p)

γ′ is approximated by Ws(p′)

γ′′ is approximated by Ws(p′′)



Tunneling orbits and Julia sets

Semiclassical sum

Ksc(a, b) =
∑

γ

A(γ)
n (a, b) exp

{ i
!

S(γ)
n (a, b)

}

Theorem (AS, Y. Ishii and K.S. Ikeda) For polynomial maps F,

(i) If F is hyperbolic and htop(F|R2) = log 2, then C = J+

(ii) If F is hyperbolic and htop(F|R2) > 0, then C = J+

(iii) If htop(F|R2) > 0, then J+ ⊂ C ⊂ K+

Here htop(P|R2) is topological entropy confined on R2, and semiclassically
contributing complex orbits are introduced as

C ≡ {
(q, p) ∈M∞ | Im Sn(q, p) converges absolutely at (q, p)

}

( Proof ) apply the convergent theory of current (Bedford-Smillie)
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Theorem (AS, Y. Ishii and K.S. Ikeda) For polynomial maps F,

(i) If F is hyperbolic and htop(F|R2) = log 2, then C = J+

(ii) If F is hyperbolic and htop(F|R2) > 0, then C = J+

(iii) If htop(F|R2) > 0, then J+ ⊂ C ⊂ K+

Here htop(P|R2) is topological entropy confined on R2, and semiclassically con-
tributing complex orbits are introduced as

C ≡ {
(q, p) ∈M∞ | Im Sn(q, p) converges absolutely at (q, p)

}

( Proof ) apply the convergent theory of current (Bedford-Smillie)



Semiclassical wavefunction hypothesis

For generic non-integrable systems (mixed systems), eigenfunctions localize
exclusively on the ergodic or the integrable component.

Localized states (either on torus or chaotic region)

Amphibious states (extended over torus and chaotic region)

Semiclassical wavefunction hypothesis

For generic non-integrable systems (mixed systems), eigenfunctions localize
exclusively on the ergodic or the integrable component.
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dynamical localization Anderson localization

(momentum space) (con f iguration space)

delocalized localized critical

ε ξ n log Ptorus
n ⟨p2⟩

“Ray and wave chaos in asymmetric resonant optical cavities”
JU Nöckel and AD Stone, Nature 385, 45 (1997)

N(p) p |ψ(p)|2

t = iτ

“Eigenstates ignores regular and chaotic phase space structures”
L.Hufnagel, R.Ketzmerick, M.F.Otto and H.Schanz, PRL, 89, 154101-1 (2002)

“Flooding of chaotic eigenstates into regular phase space islands”
A.Bäcker, R.Ketzmerick, A.G.Monasta, PRL, 94, 045102-1 (2005)

ε = 0.5

Snapshots of wavefunction
— below and above the transition point —

Violation of semiclassical eigenfunction hypothesis ?



Flooding induced by destructing coherence in the chaotic region

Why flooding does not occur ?

Amphibious nature of complex orbits

- Exponentially many complex orbits connect regular states a and chaotic
states b.

- The orbits behave as regular orbits when wander stay in the regular region,
while they become chaotic after reaching the chaotic sea.

-

Complex orbits contributing to semiclassical propagator

γ : classical orbits connecting a and b

γ is approximated by Ws(p)

γ′ is approximated by Ws(p′)

γ′′ is approximated by Ws(p′′)
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SummarySummary

- Instanton disappears due to the presence of natural boundaries in generic
multidimensional systems.

- Classically disconnected regions are connected via orbits in the Julia set.

- The orbits in the Julia set are ergodic and have amphibious nature.

- Exponentially many orbits potentially exist behind the tunneling process from
regular to chaotic regions but they are blocked by dynamical localization
in the chaotic region.

- Flooding occurs if quantum interference effects are suppressed either
by adding noise or by coupling the systems to invoke the Anderson transition
in the chaotic region.


