Spectral and Resonance Properties
of the Smilansky model

Milo$ Tater

Nuclear Physics Institute, Academy of Sciences v.v.i., Iéezv, Czech
Republic

Hradec Kralové, 10th May 2017

. .. Pavel Exner
Jointly with: Vladimir Lotoreichik

. 1. Physical motivation
Outline: 2. The model
Some numerical results



Irreversible quantum graphs

>

Quantum graph: a system consisting of a metric graph I and
a self-adjoint operator acting on L?(T") (usually the Laplacian)

quantum graphs emulate many properties of quantum
systems; many physical systems are irreversible = it is
desirable to include it in the theory

to introduce irreversibility to a quantum system: by coupling
it to a 'bath’ (it consists of 'irrelevant’ degrees of freedom)

the total system is described by H = Heystem  pbath v/
Hsystem and HP2th are defined in respective Hilbert spaces

irreversibility is generally associated with the bath having a
continuous spectrum

the most popular is the harmonic bath: a continuous set of
harmonic oscillators linearly coupled to the system (the decay
width introduced by the bath can be computed explicitly)

The model: a graph linearly coupled to a harmonic bath



Informal setting of the problem

Let I' be a metric star graph with m bonds, all emanating from a
common vertex (the root of I').

The differential expression for H acts on functions (x, y) where x
runs over I' (compact or non-compact) and y runs over the real
line R.

The differential expression is a combination of the Laplacian in x
and HO in y; it does not involve .

P(x,y) =Y un(x)faly)

n

The components u,(x) are coupled by a system of matching
conditions at the root of I'. The coupling parameter A appears in
these conditions.



If A\ =0, o(Ho) is discrete for compact ' and o(Hp) = (1/2, 00)
otherwise.

If A > 0 and small, o(H,) is similar to o(Hp). However, for A
large, the operator is unbounded from below and (—oc0,1/2]
belongs to its continuous spectrum, with no embedded eigenvalues
(even if the I is compact).

So, there is a point Ay (depending on the structure of I') that
separates these two ranges of .



Less informal setting of the problem
Let u(x) be a function on I, ul)(x) the restriction to the jth
bond. The metric in the Sobolev space HY(T) is

S 1P dx—Z/ D2 +1u2)dx
We are interested in the differential operator in L2(I" x R):
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with the boundary conditions
[t/ (root)] := (uMY (root) + - - - + (u(™) (root)

¢|8F><R =0
[Vx(root,y)] = Ayi(root,y),  Vy eR
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allows us to view H) as the Schrodinger operator
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The model
Let m=2
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The boundary condition at the vertex is replaced by a term which
can be interpreted as a , linear in y and strongly localized
in x.

Particle moving in 2D space and acted upon by Ayd(x): it forms a
valley in x-direction and a positive ridge (A > 0 at the vicinity of
x =0 = y > 0 domain is inaccessible to the particle, while y < 0
may attract it.



In 2D case, any shallow attractive potential can support at least
one bound state = we may expect discrete spectrum.

In the subcritical regime, 0 < X < V2, the operator is positive, its
spectrum is purely continuous above 1/2 and has a discrete
component in (0,1/2), while in the supercritical regime, || > v/2,
the particle can escape to infinity along the singular "channel” in
the y direction, and consequently, the spectrum covers the whole
real line being absolutely continuous.

Exner, Barseghyan (2014): yd(x) — y?V/(xy)X|x<a(X)

It dates back to Znojil (1998).



Numerical treatment
Ansatz: (x,y) = > 72, cne " fp(y) with

1 1 2
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Vit ) NG (¥)

into (the odd part is trivial, the even on L2(R x (0, 00))

leads to Byc = 0, where ¢ is the coefficient vector and B), is the
operator in ¢

1
(B)\)m,n = Kném,n + EA(fmayfn)
This matrix is tridiagonal because

1
(fmayfn) = %( v n—+ 15m,n + ﬁém,nfl)



Some numerical results
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