
Spectral and Resonance Properties
of the Smilansky model
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Irreversible quantum graphs

I Quantum graph: a system consisting of a metric graph Γ and
a self-adjoint operator acting on L2(Γ) (usually the Laplacian)

I quantum graphs emulate many properties of quantum
systems; many physical systems are irreversible ⇒ it is
desirable to include it in the theory

I to introduce irreversibility to a quantum system: by coupling
it to a ’bath’ (it consists of ’irrelevant’ degrees of freedom)

I the total system is described by H = Hsystem + Hbath + V

I Hsystem and Hbath are defined in respective Hilbert spaces

I irreversibility is generally associated with the bath having a
continuous spectrum

I the most popular is the harmonic bath: a continuous set of
harmonic oscillators linearly coupled to the system (the decay
width introduced by the bath can be computed explicitly)

I The model: a graph linearly coupled to a harmonic bath



Informal setting of the problem
Let Γ be a metric star graph with m bonds, all emanating from a
common vertex (the root of Γ).
The differential expression for H acts on functions ψ(x , y) where x
runs over Γ (compact or non-compact) and y runs over the real
line R.
The differential expression is a combination of the Laplacian in x
and HO in y ; it does not involve λ.

ψ(x , y) =
∑
n

un(x)fn(y)

The components un(x) are coupled by a system of matching
conditions at the root of Γ. The coupling parameter λ appears in
these conditions.



If λ = 0, σ(H0) is discrete for compact Γ and σ(H0) = (1/2,∞)
otherwise.

If λ > 0 and small, σ(Hλ) is similar to σ(H0). However, for λ
large, the operator is unbounded from below and (−∞, 1/2]
belongs to its continuous spectrum, with no embedded eigenvalues
(even if the Γ is compact).

So, there is a point λ0 (depending on the structure of Γ) that
separates these two ranges of λ.



Less informal setting of the problem
Let u(x) be a function on Γ, u(j)(x) the restriction to the jth
bond. The metric in the Sobolev space H1(Γ) is∫

Γ
(|u′|2 + |u|2)dx :=

m∑
j=1

∫ Bj

0
(|(u(j))′|2 + |u(j)|2)dx

We are interested in the differential operator in L2(Γ× R):

Hλ = − ∂2

∂x2
+

1

2

(
− ∂2

∂y2
+ y2

)
with the boundary conditions
[u′(root)] := (u(1))′(root) + · · ·+ (u(m))′(root)

ψ|∂Γ×R = 0
[ψx(root, y)] = λyψ(root, y), ∀y ∈ R



hλ[ψ] =

∫
Γ×R

(|ψ′x |2+
1

2
(|ψ′y |2+y2|ψ|2))dxdy+λ

∫
R
y |ψ(root, y)|2dy

allows us to view Hλ as the Schrödinger operator

Hλ = − ∂2

∂x2
+

1

2

(
− ∂2

∂y2
+ y2

)
+ λyδ(x)



The model
Let m = 2[

− ∂2

∂x2
+

1

2

(
− ∂2

∂y2
+ y2

)
+ λyδ(x)

]
ψ(x , y) = Eψ(x , y)

The boundary condition at the vertex is replaced by a term which
can be interpreted as a potential, linear in y and strongly localized
in x .
Particle moving in 2D space and acted upon by λyδ(x): it forms a
valley in x-direction and a positive ridge (λ > 0 at the vicinity of
x = 0 ⇒ y > 0 domain is inaccessible to the particle, while y < 0
may attract it.



In 2D case, any shallow attractive potential can support at least
one bound state ⇒ we may expect discrete spectrum.

In the subcritical regime, 0 < λ <
√

2, the operator is positive, its
spectrum is purely continuous above 1/2 and has a discrete
component in (0, 1/2), while in the supercritical regime, |λ| >

√
2,

the particle can escape to infinity along the singular ”channel” in
the y direction, and consequently, the spectrum covers the whole
real line being absolutely continuous.

Exner, Barseghyan (2014): yδ(x)→ y2V (xy)χ|x |≤a(x)

It dates back to Znojil (1998).



Numerical treatment
Ansatz: ψ(x , y) =

∑∞
n=0 cne

−κnx fn(y) with

κn :=

√
n +

1

2
− E fn(y) =

1√
2nn!
√
π
e−y

2/2Hn(y)

into (the odd part is trivial, the even on L2(R× (0,∞))

ψx(0+, y) = λyψ(0+, y)/2

leads to Bλc = 0, where c is the coefficient vector and Bλ is the
operator in `2:

(Bλ)m,n = κnδm,n +
1

2
λ(fm, yfn)

This matrix is tridiagonal because

(fm, yfn) =
1√
2

(
√
n + 1δm,n +

√
nδm,n−1)



Some numerical results
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