Non-Hermitian Heisenberg picture

M. Znojil, NPI Řež

talk for Šebafest: Hradec Králové, May 10th, 2017

my interest in "pictures" was inspired by Petr Šeba:

. P. Exner and **P. Šeba**, Phys. Lett. A 245 (**1998**) 35 ("Probability current tornado loops in three-dimensional scattering"): . $\text{``Writing } \psi(r) = \sqrt{\varrho(r)} \, e^{\mathrm{i}\phi(r)} \, \, \mathbf{we \ can } \dots \text{''}$

cf. also $\mathbf{P.\ \check{S}eba}$ et al, J. Phys. A $32~(\mathbf{1999})$ 8225

see also section H: "The pilot wave formulation (de Broglie and Bohm)" in review "Nine formulations of quantum mechanics" by D. F. Styer et al, Am. J. Phys. 70 (2002) 288

and, more recently, by the emergence of new ones:

A. Mostafazadeh, Int. J. Geom. Methods Mod. Phys. 7 (2010) 1191 "Pseudo-Hermitian representation of quantum mechanics"

especially *implication* of Theorem 2: "insisting on observability [of G(t)] and requiring unitarity [of evolution] **prohibit** [IP]" (= we cannot ...)

aim: a return to "we can"

pictures in nuce (Styer et al)

- A. matrix formulation (Heisenberg '25)
- B. wavefunction formulation (Schrödinger '26)
- E. density matrix formulation (von Neumann '27)
- F. second quantization (Dirac '27, Jordan and Klein '27, Jordan and Wigner '28)
- G. variational formulation (Jordan and Klein '27)
- H. pilot wave formulation (de Broglie '27, Bohm '52)
- D. phase-space formulation (Wigner '32)
- C. path-integral formulation (Feynman '48)
- I. action/angle formulation (Leacock and Padgett '83)

♡ Schrödinger picture (SP, maximally economical)

(a) preparation at $t = t_i = 0$:

$$|\varphi^{(SP)}(0)\rangle \in \mathcal{H}^{(T)}$$

(b) of interest:

$$\mathfrak{q}_{(SP)} = \mathfrak{q}_{(SP)}^{\dagger} \neq \mathfrak{q}_{(SP)}(t) \quad \text{and} \quad |\varphi^{(SP)}(t) \succ \in \mathcal{H}^{(T)}$$

(c) evolution law: Schrödinger equation

$$i\hbar \frac{d}{dt} |\varphi^{(SP)}(t)\rangle = \mathfrak{h}_{(SP)} |\varphi^{(SP)}(t)\rangle, \qquad \mathfrak{h}_{(SP)} = \mathfrak{h}_{(SP)}^{\dagger},$$

(d) measurement at $t = t_f = T > 0$

$$\prec \varphi^{(SP)}(T)|\mathfrak{q}_{(SP)}|\varphi^{(SP)}(T)\succ$$

♦ Heisenberg picture (HP, maximally intuitive)

origin: guesswork called "quantization"

classical
$$q(t) \longrightarrow \text{quantum } Q_{(HP)}(t)$$

char. feature: $constant \ |\varphi^{(HP)}\rangle \neq |\varphi^{(HP)}(t)\rangle$

$$\boxed{|\varphi^{(SP)}(t)\rangle - \mathcal{U}_{(HP)}(t)|\varphi^{(HP)}\rangle}$$

Heisenberg equations to be solved

predictions: $\langle \varphi^{(HP)}|Q_{(HP)}(T)|\varphi^{(HP)}\rangle$

♣ remark: the mind-boggling omission of the Dirac's interaction picture

.

IP known from all textbooks but not put in the list

.

why? speculations:

- (1) Haag's theorem
- (2) overcomplicated

.

 \implies let's fill the gap (and let's add fresh news)

8

♠ key message: besides the missing tenth IP item

3 several other interesting formulations of quantum theory

unifying feature: three Hilbert spaces used (PTO)

option I: static Dyson maps Ω

the oldest, Dyson-Schrödinger picture (DSP, 1956)

char. feature: $non\text{-}unitary \text{ map } \Omega_{(Dyson)}$ in the

stationary ansatz:
$$[|\varphi^{(SP)}(t) \succ = \Omega_{(Dyson)}|\varphi^{(DSP)}(t)\rangle]$$

 \Longrightarrow Dyson-Schrödinger equation with $H_{(DSP)} \neq H_{(DSP)}^{\dagger}$ in $\mathcal{H}^{(F)}$

$$i\hbar \frac{d}{dt} |\varphi^{(DSP)}(t)\rangle = H_{(DSP)} |\varphi^{(DSP)}(t)\rangle$$

(a) states living in a <u>friendlier</u> space (e.g., non-fermionic, bosonic space in IBM):

$$|\varphi^{(DSP)}(t)\rangle \in \mathcal{H}^{(F)}$$

(b) $\mathcal{H}^{(F)}$ = auxiliary, unphysical; observables = non-Hermitian:

$$Q_{(DSP)}^{\dagger} \neq Q_{(DSP)} = \Omega^{-1} \mathfrak{q}_{(SP)} \Omega \neq Q_{(DSP)}(t)$$

- (c) ("metric") $\Theta = \Omega^{\dagger}\Omega$ defines the ultimate, "standard" physical Hilbert space $\mathcal{H}^{(S)}$
- (d) \Longrightarrow return to Hermiticity and to the correct predictions (in $\mathcal{H}^{(S)}$):

 $\langle \varphi^{(DSP)}(T) | \Theta_{(DSP)} Q_{(DSP)} | \varphi^{(DSP)}(T) \rangle$

the inverted, Buslaev-Schrödinger picture (BSP, 1993)

char. feature: Dyson's flowchart upside down:

false $\mathcal{H}^{(F)}$ and non-Hermitian $H_{(DSP)} \neq H_{(DSP)}^{\dagger}$ given

auxiliary map $\Omega_{(Dyson)}$ and textbook Hamiltonian $\mathfrak{h}_{(SP)}$ reconstructed

exactly solvable \mathcal{PT} -symmetric model offered

(V. Buslaev and V. Grecchi, J. Phys. A 26 (1993) 5541)

$$H_{(BSP)} = \frac{1}{2} \left(-\frac{d^2}{dx^2} + \frac{j^2 - 1}{4s^2(x)} + s^2(x) \right) - g^2 s^4(x), \quad s(x) = x - i\epsilon$$

B+G got, surprisingly, the closed form of

$$\mathfrak{h}_{(SP)} = -\frac{d^2}{dx^2} + x^2(gx - 1)^2 - j(gx - 1/2)$$

with $\Omega =$ change of variables plus Fourier transform.

1998: Bender's $\mathcal{PT}\mathbf{-symmetric}\ V(x)=x^2(\mathrm{i} x)^\delta$

(C. M. Bender and S. Boettcher, Phys. Rev. Lett. $80\ (1998)\ 5243)$

option II: $\fbox{ non-static}$ Dyson maps $\Omega(t)$

state: two IP vectors in $\mathcal{H}^{(F)}$

(Hermitian) SP states \rightarrow (non-Hermitian) IP states

$$|\varphi(t) \succ = \Omega(t) |\psi(t)\rangle = \left[\Omega^\dagger(t)\right]^{-1} |\widetilde{\psi}(t)\rangle \in \mathcal{H}^{(P)}\,, \qquad |\psi(t)\rangle, |\widetilde{\psi}(t)\rangle \in \mathcal{H}^{(F)}\,.$$

(Hermitian) SP Hamiltonian \rightarrow (non-Hermitian) IP Hamiltonian (real energy)

$$\mathfrak{h}_{(SP)}(t) = \Omega(t) H(t) \Omega^{-1}(t)$$

evolution law: two Schrödinger equations with $G(t)=H(t)-\Sigma(t)$ and $\Sigma(t)=\mathrm{i}\Omega^{-1}(t)\left[\partial_t\Omega(t)\right]$

$$i\frac{d}{dt} |\psi(t)\rangle = G(t) |\psi(t)\rangle, \qquad |\psi(t)\rangle \in \mathcal{H}^{(F)},$$

$$i\frac{d}{dt} |\widetilde{\psi}(t)\rangle = G^{\dagger}(t) |\widetilde{\psi}(t)\rangle, \qquad |\widetilde{\psi}(t)\rangle \in \mathcal{H}^{(F)}.$$

evolution law for observables

.

SP:
$$\mathfrak{a}(t) = \mathfrak{a}^{\dagger}(t)$$

F-space:
$$A(t) = \Omega^{-1}(t)\mathfrak{a}(t)\Omega(t)$$

$$\mathrm{i} \frac{d}{dt} A(t) = A(t) \Sigma(t) - \Sigma(t) A(t) + \Omega^{-1}(t) [\mathrm{i} \dot{\mathfrak{a}}(t)] \Omega(t) \,.$$

.

= non-Hermitian Heisenberg equation

III: non-static Dyson maps $\Omega(t)$

static metrics $\Theta(t)$

$\mathbf{HP} = \mathbf{special}$ case of \mathbf{IP} such that G(t) = 0

task: keep wave functions time-independent

easy to achieve: set $\Sigma(t) = H(t)$

Non-Hermitian Heisenberg representation.

MZ, Phys. Lett. A 379 (2015) 2013-2017 (arXiv:1505.01036)

thanks for your attention;

you may read more about the subject, in chapter "Ideas, people, and trends" by MZ, pp. 7 - 58 of

Petře, happy birthday!